
Efficient Algorithms for MPEG-4 AAC-ELD, AAC-LD and AAC-LC
Filterbanks

Ravi K. Chivukula†, Yuriy A. Reznik‡1, Venkat Devarajan†

†The University of Texas at Arlington, Email: {ravikiran.chivukula,venkat}@uta.edu
 ‡Stanford University, Email: yreznik@stanford.edu

1 On leave from Qualcomm Inc, San Diego, CA.

Abstract

Recently, MPEG has completed work on a new low-
delay audio codec called MPEG-4 AAC Enhanced Low
Delay (ELD) targeting low bit rate, full-duplex
communication applications such as audio and video
conferencing. The AAC-ELD profile combines low
delay SBR filterbanks with a new low delay core coder
filterbank to achieve both high coding efficiency and
low algorithmic delay. In this paper, we propose an
efficient mapping of the AAC-ELD core coder
filterbanks to the well known MDCT. This provides a
fast algorithm for the new filterbanks. Since AAC-LD
and AAC-LC profiles also use MDCT filterbanks, this
mapping enables efficient joint implementation of
filterbanks for all 3 profiles. We also present a very
efficient 15-point DCT-II algorithm that is useful in all
3 profiles for frame lengths of 960 and 480. This
algorithm requires just 17 multiplications and 67
additions. The design structure and complexity
analysis for the filterbanks is also provided.

1. Introduction

Traditionally, speech and audio coding paradigms
have been significantly different. Speech coding is
primarily based on source modeling [1], and achieving
low round-trip algorithmic delay [2] is considered
essential for the intended applications (full-duplex
communication systems). However, most speech
codecs are only efficient in encoding single-speaker
material and are unsuitable for generic audio content
[6].

On the other hand, audio coding is traditionally
based on modeling and exploiting the psychoacoustic
characteristics of human auditory system [3]. Most of
the codecs are intended for perceptually transparent
reproduction of any generic music material. However,

these codecs usually operate on long frame lengths for
good frequency selectivity. They also typically use
orthogonal filterbanks such as Modified Discrete
Cosine Transform (MDCT) [5], due to which, the delay
contributed by the filterbank depends on the length of
the prototype low-pass filter [8]. Hence, they are
usually characterized by high algorithmic delays,
making them unsuitable for full-duplex communication.
The MPEG-4 AAC-LC [9] is a well-known example of
this type of codec.

MPEG-4 AAC Low Delay (LD) is the first audio
codec that addressed the issue of high algorithmic
delay [9]. It reduces delay by halving the frame length
from 1024/960 to 512/480; by removing block
switching (thereby avoiding the look-ahead delay) and
by minimizing the use of a bit reservoir in the encoder.
Though it could reduce the delay down to 20ms, it still
requires bit rates close to 64kbps per channel in order
to deliver satisfactory audio quality [6].

Recently, MPEG standardized a new algorithm -
Enhanced Low Delay AAC (AAC-ELD) [6, 7, 22].
This codec addresses the drawbacks of AAC-LD by
incorporating the low-delay spectral band replication
(LD-SBR) tool and a new low-delay core coder
filterbank. While the SBR technology [23-24]
improves coding efficiency, LD-SBR tool also
minimizes the introduced delay by avoiding the use of
variable time grid [6, 22] and by using low-delay
analysis and synthesis quadrature mirror filter (QMF)
banks [22]. The delay of the new core coder filterbank
is independent of filter length [6, 8] and hence, a
window with multiple overlap for good frequency
selectivity can be used. Parts of the window that access
future input values are zeroed out, thus reducing the
delay further. With these modifications, AAC-ELD
achieves an algorithmic delay of only 31ms and
delivers satisfactory audio quality at bit rates as low as
32kbps per channel [22].

In this paper, we present an efficient mapping of the
AAC-ELD core coder filterbanks to the well known
MDCT [5]. This mapping involves only permutations,
sign changes and additions (only for analysis
filterbank). Since many fast algorithms exist for
MDCT, this mapping essentially provides a fast
algorithm to implement the new filterbanks. Further,
AAC-LC and AAC-LD profiles also use MDCT
filterbanks. Thus, this mapping provides a common
framework for the joint implementation of filterbanks
in all 3 profiles. We also present a very efficient
algorithm for 15-point DCT-II useful for frame lengths
of 960 and 480. This algorithm is based on mapping
the DCT to an equal length real input DFT. Complexity
analysis of the AAC-ELD core coder filterbanks is
provided at the end.

2. Definitions

 The MPEG-4 AAC ELD core coder analysis and
synthesis filterbanks are defined as follows [7]:

 
1

0
2 1

() 2 ()cos 0
2 2

N

n N

N
X k z n n n k for k

N





        
  



 
1

2

0
0

2 2 1
() ()cos 0 2

2

N

k

x n X k n n k for n N
N N






        
  


where, 0 (/ 4 1/ 2)n N   , z(n) denotes windowed

input data samples, X(k) denotes subband coefficients,
x(n) denotes reconstructed samples (prior to aliasing
cancellation). N is 1024 or 960.

The MDCT and IMDCT are defined as follows
[5,8]:

1

0
0

0,...., / 2 1,
2 1

() 2. ()cos () ;
2

N

n

k NX k z n n p k
N





 
      

  


/2 1

0
0

0,1,...., 1
2 2 1

() ()cos () ;
2

N

k

n Nx n X k n p k
N N





 
      

  
 

where, 0 (/ 4 1/ 2)p N  , ()X k denotes MDCT

spectrum coefficients, ()x n denotes reconstructed

samples (prior to aliasing cancellation) and N is the
length of the input sequence.

Hereafter, for brevity, we will use the terms DCT
and IDCT to refer to DCT-II and IDCT-II transforms
respectively without the normalization factors [4].

3. Mapping the Analysis Filterbank to
MDCT

In the case of the analysis filterbank, for 0
2

N
k  ,

 

 

 

 

   

1

0

1

0
0

1

0
0

1

0
0

0

2 1
() 2. ()cos

2

2 1
 2. ()cos

2

2 1
2. ()cos

2

2 1
 2. ()cos

2

2
2. () () cos

n N

N

n

N

n

N

n

X k z n n n k
N

z n n n k
N

z n N n N n k
N

z n n n k
N

z n z n N n n k
N
























      
  

      
  

        
  

      
  

    









 

   

1

0

1

0
0

1

0
0

1

2

2 1
2. () () cos

2 2

2 1
2.(1) () () sin

2

N

n

N

n

N
k

n

N
z n z n N n p k

N

z n z n N n p k
N















  
  

  

           
   

         
  







   

   

11
2

0
0

11 1
2 4

0
0

1
2

2 1
2.(1) () () sin 1

2 2

2 1
(1) .2 (1) () () cos

2

N Nk

n

N NNk n

n

N
X k

N
z n z n N n p k

N

z n z n N n p k
N





    
 



         
   



    
 

             
                 





We note that the summation on the RHS represents
MDCT. Thus, the algorithm for implementing the
analysis filterbank can be formulated as follows:

1. Form the sequence {z(n) – z(n-N)} for
0 n N  ,

2. Invert the signs of the even indexed samples if
N/4 is even or invert the signs of odd-indexed
samples if N/4 is odd,

3. Apply MDCT,
4. Reverse the order of the output,
5. Invert the signs of the odd-indexed samples if

N/2 is even or invert the signs of even-indexed
samples if N/2 is odd.

The flow graph for the analysis filterbank is shown in
Fig. 1 assuming N/4 is even. It can be observed that the
complexity of the filterbank is N subtractions plus the
complexity of MDCT.

Fig 1. Flow graph for analysis filterbank

4. Mapping the Synthesis Filterbank to
IMDCT

In the case of synthesis filterbank, for 0 n N  ,

 

 

1
2

0
0

1
2

0
0

2 2 1
() () cos

2

2 2 1
()cos

2

()

N

k

N

k

x n N X k n N n k
N N

X k n n k
N N

x n













           

        
 





For 0 n N  ,

 

 

/2 1

0
0

/2 1

0
0

/2 1 1
2

0
0

1
4

(1)

1
2

2 2 1
() ()cos

2 2

2 2 1
(1) ()sin

2

2 2 1
(1) sin 1

2 2

2
(1)

N

k

N
k

k

NN k

k

N
n

N
k

N
x n X k n p k

N N

X k n p k
N N

N
X n p k

N N

N


















    
 



   
  

 

        
   

      
  

           
    









 
/2 1 1

2
0

0

1
2

2 1
cos

2

NN k

k

N
kX n p k

N


    
 



 
             


We note that the summation on the RHS is an IMDCT.

Thus, the algorithm for the synthesis filterbank is:

Fig 2. Flow graph for synthesis filterbank

1. Invert the signs of the odd-indexed spectral
coefficients, X(k), if N/2 is even or invert the signs
of even-indexed coefficients if N/2 is odd,

2. Reverse the order of the above sequence,
3. Apply IMDCT,
4. Invert the signs of the even-indexed output

samples if N/4 is even or invert the signs of odd-
indexed samples if N/4 is odd; these form the first
N output points of the filterbank,

5. The remaining N output samples are obtained by
inverting the signs of the first N samples.

The flow graph for the synthesis filterbank is shown in
Fig. 2 assuming N/4 is even. It can be seen that the
complexity of the synthesis filterbank is the same as
that of IMDCT.

5. Implementation of MDCT

The problem of efficient implementation of MDCT
and IMDCT transforms has already been well studied,
and a number of algorithms can be found in the
literature – see Malvar [5] and references therein.
However, most of such existing fast algorithms (e.g.
FFT-based algorithm of Duhamel et al. [10]), are only

0
1
2

N/2 point
DCT-IV

N/4-1
N/4

N/4+1

N/2-3
N/2-2
N/2-1

X̃(0)
X̃(1)
X̃(2)
.
.
.
.
.
.
.
.
.
.
.
.

X̃(N/2-3)
X̃(N/2-2)
X̃(N/2-1)

x(3N/4)
x(3N/4+1)
.
.
.
.
.

x(N-1)

x((3N/4-1)
x(3N/4-2)
.
.
.
.
.
.

x(N/2)
x(0)
x(1)
.
.
.
.
.

x(N/4-2)
x(N/4-1)

x(N/2-1)
x(N/2-2)
.
.
.
.
.

x(N/4+2)
x(N/4+1)
x(N/4)

-1

-1

-1

-1

-1

-1

-1

-1

-1

Fig 3. Mapping IMDCT to DCT-IV [11]

suitable for implementing transforms with power-of-2
lengths.

A more general framework for implementing
MDCT/IMDCT of even lengths has been recently
described by Cheng and Hsu [11].

Their algorithm maps MDCT/IMDCT to DCT-IV.
The DCT-IV in turn can be mapped to DCT/IDCT with
pre/post additions and multiplications [12]. Using the
involutory property of the DCT-IV matrix, it is
possible to merge the pre/post multiplications in DCT-
IV with the windowing stage, thus reducing the number
of multiplications and the storage requirement. The
flow
graph for mapping IMDCT to DCT-IV is shown in Fig.
3. The flow graph for mapping DCT-IV to IDCT is
shown in Fig. 4.

An algorithm that is applicable for any even length
DCT is given by Kok [12]. Kok’s algorithm is a
decimation-in-frequency strategy, splitting an N-point
DCT into two N/2-point DCTs. The algorithm was
shown to be optimal for both power-of-2 lengths and
also even lengths. Thus, the algorithm can be used even
for MDCT block lengths such as 960/120 in AAC-LC
and 480 in AAC-LD and AAC-ELD.

Usage of this overall scheme leads to a very
efficient MDCT implementation and we assume this
scheme in our complexity analysis given in section 7.
Details of this algorithm are also given in [13].

Fig 4. Mapping DCT-IV to IDCT [12]

6. Fast 15-point DCT Algorithm

As noted in section 5, DCT-based MDCT/IMDCT
algorithms are computationally very efficient.
Generally, radix-2 algorithms (which split an N-point
transform into two N/2-point transforms) such as [12]
are used for the implementation of DCT. Recursive
application of such algorithms for transform lengths
like 960 (64 15) and 480 (32 15) eventually leads to
a 15-point DCT implementation. Hence, fast
algorithms for 15-point DCT are critical for the overall
performance of the MDCT algorithm.

An N-point DCT, XC(k), of a sequence x(n) is
defined as follows (ignoring the normalization factors)
[4]:

1

0

(2 1)
() () cos ; 0,..., 1

2

N

C
n

n k
X k x n k N

N





    
 

Heideman [14] showed that if N is odd, the DCT can
be mapped to an equal length real-input DFT with just
input and output permutations and sign changes at the
output. Thus, the computational complexity of an odd-
length DCT is equal to that of an odd-length real DFT.
Hence, efficient algorithms for 15-point real DFT can
be used to implement a 15-point DCT.

A 15-point DFT can be efficiently implemented
using the Winograd Fourier Transform Algorithm
(WFTA) [15, 16]. The WFTA for 15-point DFT uses
Winograd 3-point and 5-point DFT modules in a prime
factor mapping. Because of the structure of the 3-point
and 5-point modules, it is possible to nest together the
multiplications in the individual modules, thus reducing
the total number of multiplications. See [15-17] for
details.

Fig 5. Flow graph for 15-point DCT-II

The 15-point real WFTA, and hence the 15-point
DCT, can be implemented with 17 multiplications and
67 additions [17, 18]. The resulting FFT algorithm is
the least complex among the surveyed literature [17-
21]. The flow graph for the 15-point DCT is shown in
Fig. 5. IDCT can be obtained by transposing this flow
graph. The constants used in the figure are defined
below:

2 2
;

5 3
u v

 
   

1 2
cos cos 2 cos cos 2

1;
2 2

u u u u
c c

 
  

3 4 5sin sin 2 ; sin 2 ; sin sin 2c u u c u c u u    

6 7 1 6 8 2 6

9 3 6 10 4 6 11 5 6

cos 1; ;

; ;

c v c c c c c c

c c c c c c c c c

   

  

12 13 1 12 14 2 12

15 3 12 16 4 12 17 5 12

sin ; ;

; ;

c v c c c c c c

c c c c c c c c c

  

     

7. Complexity Analysis

In this section, we discuss the computational
complexity of the AAC-ELD filterbanks. We assume
that the MDCT algorithm discussed in section 5 is used
for these filterbanks. Since N is either 1024 or 960, we
give the analysis assuming N is of the form 2m or
15 2m (3)m  .

Let RMA(N) and RAA(N) denote, respectively, the
number of real multiplications and additions required
for the analysis filterbank and the preceding windowing
operation. Let RMS(N) and RAS(N) denote the
corresponding numbers for the synthesis filterbank and
the succeeding windowing and overlap-add operation.
N/8 samples of the window are actually zeros and
hence, multiplications and additions involving these
coefficients need not be counted. Then,

    13
2 2

4 8
m m

A S
mN N

RM N RM N    

    3 5
2 2

4 8
m m

A S
mN N

RA N RA N    

1

(15 2) (15 2)

(2 3)
 2 2 (15)

8

m m
A S

m
D

RM N RM N

m N
N RM

     


 

1

(15 2) (15 2)

(6 7)
 (59 (15)).2

8

m m
A S

m
D

RA N RA N

m N
RA 

     


 

where, RMD(15) and RAD(15) are the number of
multiplications and additions for 15-point DCT. From
section 6 we have, RMD(15) = 17, RAD(15) = 67.

Thus, for N = 1024 we have 4224 multiplications
and 8320 additions; for N = 960 we have 3544
multiplications and 7512 additions.

8. Summary

In this paper, we presented an algorithm for
mapping the MPEG-4 AAC-ELD filterbanks to
MDCT/IMDCT. This mapping requires only sign
changes, permutations and additions. The mapping can
be used to derive a fast algorithm for the filterbanks.
Further, the mapping provides a common framework
for the joint implementation of filterbanks in AAC-LC,
LD and ELD profiles. We also presented a very
efficient 15-point DCT algorithm that is useful for
block lengths of 960 and 480. We also provided a
complexity analysis for the AAC-ELD filterbanks for
the possible block lengths.

9. References

[1] A.M. Kondoz, “Digital Speech: Coding for Low Bit Rate
Communication Systems”, 2nd Ed., Wiley, 2004.
[2] A. Spanias, “Speech Coding: A Tutorial Review”, Proc.
IEEE, vol. 82, pp. 1541-1582, Oct. 1994.
[3] T. Painter and A. Spanias, “Perceptual Coding of Digital
Audio”, Proc. IEEE, vol. 88, pp. 451-515, Apr. 2000.

[4] K. R. Rao and P. Yip, “Discrete Cosine Transform:
Algorithms, Advantages, Applications”, New York,
Academic Press, 1990.
[5] H. Malvar, “Signal Processing with Lapped Transforms”,
Artech House, Boston, 1992.
[6] M. Schnell et al., “Enhanced MPEG-4 Low Delay AAC –
Low Bitrate High Quality Communication”, 122nd

Convention of AES, Vienna, Austria, May 2007.
[7] ISO/IEC 14496-3:2005/FPDAM9, “Enhanced Low Delay
AAC”, Apr. 2007.
[8] G.D.T. Schuller and T. Karp, “Modulated Filterbanks
with Arbitrary System Delay: Efficient Implementations and
the Time Varying Case”, IEEE Transactions on Signal
Processing, vol. 48, no. 3, pp. 737-748, March 2000.
[9] ISO/IEC 14496-3: Subpart 4: “General Audio Coding

(GA) - AAC, TwinVQ, BSAC”.
[10] P. Duhamel; Y. Mahieux and J.P. Petit, "A Fast
Algorithm for the Implementation of Filter Banks Based on
`Time Domain Aliasing Cancellation'," in Proc. ICASSP-91,
pp. 2209-2212 vol. 3, 14-17 Apr 1991.
[11] M.-H. Cheng and Y.-H. Hsu, "Fast IMDCT and MDCT
Algorithms - A Matrix Approach," IEEE Transactions on
Signal Processing, vol. 51, no. 1, pp. 221-229, Jan. 2003.
[12] C.W. Kok, "Fast Algorithm for Computing Discrete
Cosine Transform," IEEE Transactions on Signal
Processing, vol. 45, no. 3, pp. 757-760, Mar 1997.
[13] R.K. Chivukula and Y.A. Reznik, “Efficient
Implementation of a Class of MDCT/IMDCT Filterbanks for
Speech and Audio Coding Applications”, accepted for
ICASSP 2008.
[14] M.T. Heideman, “Computation of an Odd-Length DCT
from a Real-Valued DFT of the Same Length”, IEEE
Transactions on Signal Processing, vol. 40, no. 1, pp. 54-61,
Jan 1992.
[15] S. Winograd, “On Computing the Discrete Fourier
Transform”, Mathematics of Computation, vol. 32, no. 141,
pp. 175-199, Jan 1978.
[16] H.F. Silverman, “An Introduction to Programming the
Winograd Fourier Transform Algorithm (WFTA)”, IEEE
Trans. ASSP, vol. 25, no. 2, pp. 152-165, April 1977.
[17] C.S. Burrus and T.W. Parks, “DFT/FFT and
Convolution Algorithms – Theory and Implementation”,
Wiley, New York, 1985.
[18] H.V. Sorensen et al. “Real-Valued Fast Fourier
Transform Algorithms”, IEEE Trans. ASSP, vol. 35, no. 6,
pp. 849-863, June 1987.
[19] C.S. Burrus and P.W. Eschenbacher, “An In-Place, In-
Order Prime Factor FFT Algorithm”, IEEE Trans. ASSP, vol.
29, no. 4, pp. 806-817, Aug 1981.
[20] D.P. Kolba and T.W. Parks, “A Prime Factor FFT
Algorithm Using High-Speed Convolution”, IEEE Trans.
ASSP, vol. 25, pp. 281-294, Aug 1977.
[21] M.T. Heideman, C.S. Burrus and H.W. Johnson, “Prime
Factor FFT Algorithms for Real-Valued Series”, Proc. IEEE
ICASSP, pp. 492-495, San Diego, March 1984.
[22] M. Schnell et al., “Low Delay Filterbanks for Enhanced
Low Delay Audio Coding”, IEEE Workshop on Appl. Signal
Proc. to Audio and Acoustics, pp. 235-238, Oct. 2007.

[23] M. Dietz et al., “Spectral Band Replication, a Novel
Approach in Audio Coding”, 12th AES Convention, Munich,
Germany, Apr. 2002.
[24] P. Ekstrand, “Bandwidth Extension of Audio Signals by
Spectral Band Replication”, Proc. 1st IEEE Benelux
Workshop on Model based Processing and Coding of Audio,
Leuven, Belgium, Nov. 2002.

