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Abstract

Recently, MPEG has completed work on a new low-
delay audio codec called MPEG-4 AAC Enhanced Low 
Delay (ELD) targeting low bit rate, full-duplex 
communication applications such as audio and video
conferencing. The AAC-ELD profile combines low 
delay SBR filterbanks with a new low delay core coder 
filterbank to achieve both high coding efficiency and 
low algorithmic delay. In this paper, we propose an
efficient mapping of the AAC-ELD core coder
filterbanks to the well known MDCT. This provides a 
fast algorithm for the new filterbanks. Since AAC-LD 
and AAC-LC profiles also use MDCT filterbanks, this 
mapping enables efficient joint implementation of 
filterbanks for all 3 profiles. We also present a very 
efficient 15-point DCT-II algorithm that is useful in all 
3 profiles for frame lengths of 960 and 480. This 
algorithm requires just 17 multiplications and 67 
additions. The design structure and complexity 
analysis for the filterbanks is also provided.

1. Introduction

Traditionally, speech and audio coding paradigms 
have been significantly different. Speech coding is
primarily based on source modeling [1], and achieving 
low round-trip algorithmic delay [2] is considered 
essential for the intended applications (full-duplex 
communication systems). However, most speech 
codecs are only efficient in encoding single-speaker 
material and are unsuitable for generic audio content
[6]. 

On the other hand, audio coding is traditionally 
based on modeling and exploiting the psychoacoustic 
characteristics of human auditory system [3]. Most of 
the codecs are intended for perceptually transparent
reproduction of any generic music material. However, 

these codecs usually operate on long frame lengths for 
good frequency selectivity. They also typically use
orthogonal filterbanks such as Modified Discrete 
Cosine Transform (MDCT) [5], due to which, the delay 
contributed by the filterbank depends on the length of 
the prototype low-pass filter [8]. Hence, they are
usually characterized by high algorithmic delays,
making them unsuitable for full-duplex communication.
The MPEG-4 AAC-LC [9] is a well-known example of 
this type of codec.

MPEG-4 AAC Low Delay (LD) is the first audio 
codec that addressed the issue of high algorithmic 
delay [9]. It reduces delay by halving the frame length 
from 1024/960 to 512/480; by removing block 
switching (thereby avoiding the look-ahead delay) and 
by minimizing the use of a bit reservoir in the encoder. 
Though it could reduce the delay down to 20ms, it still 
requires bit rates close to 64kbps per channel in order 
to deliver satisfactory audio quality [6].

Recently, MPEG standardized a new algorithm -
Enhanced Low Delay AAC (AAC-ELD) [6, 7, 22]. 
This codec addresses the drawbacks of AAC-LD by 
incorporating the low-delay spectral band replication 
(LD-SBR) tool and a new low-delay core coder 
filterbank. While the SBR technology [23-24] 
improves coding efficiency, LD-SBR tool also 
minimizes the introduced delay by avoiding the use of 
variable time grid [6, 22] and by using low-delay 
analysis and synthesis quadrature mirror filter (QMF)
banks [22]. The delay of the new core coder filterbank
is independent of filter length [6, 8] and hence, a 
window with multiple overlap for good frequency 
selectivity can be used. Parts of the window that access 
future input values are zeroed out, thus reducing the 
delay further. With these modifications, AAC-ELD 
achieves an algorithmic delay of only 31ms and 
delivers satisfactory audio quality at bit rates as low as 
32kbps per channel [22].



In this paper, we present an efficient mapping of the 
AAC-ELD core coder filterbanks to the well known 
MDCT [5]. This mapping involves only permutations, 
sign changes and additions (only for analysis 
filterbank). Since many fast algorithms exist for 
MDCT, this mapping essentially provides a fast 
algorithm to implement the new filterbanks. Further, 
AAC-LC and AAC-LD profiles also use MDCT 
filterbanks. Thus, this mapping provides a common 
framework for the joint implementation of filterbanks 
in all 3 profiles. We also present a very efficient 
algorithm for 15-point DCT-II useful for frame lengths 
of 960 and 480. This algorithm is based on mapping 
the DCT to an equal length real input DFT. Complexity 
analysis of the AAC-ELD core coder filterbanks is 
provided at the end.

2. Definitions

     The MPEG-4 AAC ELD core coder analysis and 
synthesis filterbanks are defined as follows [7]:
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where, 0 ( / 4 1/ 2)n N   , z(n) denotes windowed 

input data samples, X(k) denotes subband coefficients, 
x(n) denotes reconstructed samples (prior to aliasing 
cancellation). N is 1024 or 960.

The MDCT and IMDCT are defined as follows 
[5,8]:
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where, 0 ( / 4 1/ 2)p N  , ( )X k denotes MDCT 

spectrum coefficients, ( )x n denotes reconstructed 

samples (prior to aliasing cancellation) and N is the 
length of the input sequence.

Hereafter, for brevity, we will use the terms DCT 
and IDCT to refer to DCT-II and IDCT-II transforms 
respectively without the normalization factors [4].

3. Mapping the Analysis Filterbank to 
MDCT

In the case of the analysis filterbank, for 0
2

N
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We note that the summation on the RHS represents
MDCT. Thus, the algorithm for implementing the 
analysis filterbank can be formulated as follows:

1. Form the sequence {z(n) – z(n-N)} for 
0 n N  ,

2. Invert the signs of the even indexed samples if 
N/4 is even or invert the signs of odd-indexed 
samples if N/4 is odd,

3. Apply MDCT,
4. Reverse the order of the output,
5. Invert the signs of the odd-indexed samples if 

N/2 is even or invert the signs of even-indexed 
samples if N/2 is odd.

The flow graph for the analysis filterbank is shown in 
Fig. 1 assuming N/4 is even. It can be observed that the 
complexity of the filterbank is N subtractions plus the 
complexity of MDCT.



Fig 1. Flow graph for analysis filterbank
                                           

4. Mapping the Synthesis Filterbank to 
IMDCT

In the case of synthesis filterbank, for 0 n N  ,
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We note that the summation on the RHS is an IMDCT. 

Thus, the algorithm for the synthesis filterbank is:

Fig 2. Flow graph for synthesis filterbank

1. Invert the signs of the odd-indexed spectral 
coefficients, X(k), if N/2 is even or invert the signs 
of even-indexed coefficients if N/2 is odd,

2. Reverse the order of the above sequence,
3. Apply IMDCT,
4. Invert the signs of the even-indexed output 

samples if N/4 is even or invert the signs of odd-
indexed samples if N/4 is odd; these form the first 
N output points of the filterbank,

5. The remaining N output samples are obtained by 
inverting the signs of the first N samples.

The flow graph for the synthesis filterbank is shown in 
Fig. 2 assuming N/4 is even. It can be seen that the 
complexity of the synthesis filterbank is the same as 
that of IMDCT.

5. Implementation of MDCT

The problem of efficient implementation of MDCT 
and IMDCT transforms has already been well studied, 
and a number of algorithms can be found in the 
literature – see Malvar [5] and references therein. 
However, most of such existing fast algorithms (e.g. 
FFT-based algorithm of Duhamel et al. [10]), are only
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Fig 3. Mapping IMDCT to DCT-IV [11]

suitable for implementing transforms with power-of-2 
lengths.

A more general framework for implementing 
MDCT/IMDCT of even lengths has been recently 
described by Cheng and Hsu [11]. 

Their algorithm maps MDCT/IMDCT to DCT-IV. 
The DCT-IV in turn can be mapped to DCT/IDCT with 
pre/post additions and multiplications [12]. Using the 
involutory property of the DCT-IV matrix, it is 
possible to merge the pre/post multiplications in DCT-
IV with the windowing stage, thus reducing the number 
of multiplications and the storage requirement. The 
flow
graph for mapping IMDCT to DCT-IV is shown in Fig. 
3. The flow graph for mapping DCT-IV to IDCT is 
shown in Fig. 4.

An algorithm that is applicable for any even length 
DCT is given by Kok [12]. Kok’s algorithm is a 
decimation-in-frequency strategy, splitting an N-point 
DCT into two N/2-point DCTs. The algorithm was 
shown to be optimal for both power-of-2 lengths and 
also even lengths. Thus, the algorithm can be used even 
for MDCT block lengths such as 960/120 in AAC-LC 
and 480 in AAC-LD and AAC-ELD.

Usage of this overall scheme leads to a very
efficient MDCT implementation and we assume this 
scheme in our complexity analysis given in section 7. 
Details of this algorithm are also given in [13].

Fig 4. Mapping DCT-IV to IDCT [12]

6. Fast 15-point DCT Algorithm

As noted in section 5, DCT-based MDCT/IMDCT 
algorithms are computationally very efficient. 
Generally, radix-2 algorithms (which split an N-point 
transform into two N/2-point transforms) such as [12] 
are used for the implementation of DCT. Recursive 
application of such algorithms for transform lengths 
like 960 (64 15) and 480 (32 15) eventually leads to 
a 15-point DCT implementation. Hence, fast 
algorithms for 15-point DCT are critical for the overall 
performance of the MDCT algorithm.

An N-point DCT, XC(k), of a sequence x(n) is 
defined as follows (ignoring the normalization factors)
[4]:
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Heideman [14] showed that if N is odd, the DCT can 
be mapped to an equal length real-input DFT with just 
input and output permutations and sign changes at the 
output. Thus, the computational complexity of an odd-
length DCT is equal to that of an odd-length real DFT. 
Hence, efficient algorithms for 15-point real DFT can 
be used to implement a 15-point DCT.

A 15-point DFT can be efficiently implemented 
using the Winograd Fourier Transform Algorithm 
(WFTA) [15, 16]. The WFTA for 15-point DFT uses 
Winograd 3-point and 5-point DFT modules in a prime 
factor mapping. Because of the structure of the 3-point 
and 5-point modules, it is possible to nest together the 
multiplications in the individual modules, thus reducing 
the total number of multiplications. See [15-17] for 
details. 



Fig 5. Flow graph for 15-point DCT-II

The 15-point real WFTA, and hence the 15-point 
DCT, can be implemented with 17 multiplications and 
67 additions [17, 18]. The resulting FFT algorithm is 
the least complex among the surveyed literature [17-
21]. The flow graph for the 15-point DCT is shown in 
Fig. 5. IDCT can be obtained by transposing this flow 
graph. The constants used in the figure are defined 
below:
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7. Complexity Analysis

In this section, we discuss the computational 
complexity of the AAC-ELD filterbanks. We assume 
that the MDCT algorithm discussed in section 5 is used 
for these filterbanks. Since N is either 1024 or 960, we 
give the analysis assuming N is of the form 2m or 
15 2m ( 3)m  .



Let RMA(N) and RAA(N) denote, respectively, the 
number of real multiplications and additions required 
for the analysis filterbank and the preceding windowing 
operation. Let RMS(N) and RAS(N) denote the 
corresponding numbers for the synthesis filterbank and 
the succeeding windowing and overlap-add operation. 
N/8 samples of the window are actually zeros and 
hence, multiplications and additions involving these 
coefficients need not be counted. Then,
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where, RMD(15) and RAD(15) are the number of 
multiplications and additions for 15-point DCT. From 
section 6 we have, RMD(15) = 17, RAD(15) = 67.

Thus, for N = 1024 we have 4224 multiplications 
and 8320 additions; for N = 960 we have 3544 
multiplications and 7512 additions.

8. Summary

In this paper, we presented an algorithm for 
mapping the MPEG-4 AAC-ELD filterbanks to 
MDCT/IMDCT. This mapping requires only sign 
changes, permutations and additions. The mapping can 
be used to derive a fast algorithm for the filterbanks. 
Further, the mapping provides a common framework 
for the joint implementation of filterbanks in AAC-LC, 
LD and ELD profiles. We also presented a very 
efficient 15-point DCT algorithm that is useful for 
block lengths of 960 and 480. We also provided a
complexity analysis for the AAC-ELD filterbanks for 
the possible block lengths.
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