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ABSTRACT

We describe a general techniques for improving precision of
fixed-point implementations of signal processing algorithms
(such as filters, transforms, etc.) by introducing “common
factors”. These factors are applied to groups of real constants
that need to be approximated by dyadic rational numbers, and
we show that by carefully choosing values of common fac-
tors, the errors of final dyadic rational approximations can be
significantly reduced. We show that the problem of design of
such approximations is related to the classic Diophantine ap-
proximation problem, and include examples explaining how
it can be solved, and used for improving practical designs.

Index Terms— Signal processing, fixed point algorithms,
Diophantine approximations.

1. INTRODUCTION

One of the most basic tasks that arises in the design of fixed-
point signal processing algorithms is that of approximating a
given set of real (and possibly irrational) constantsθ1, . . . , θm,
(m > 2) with a set of rational numbers with common dyadic
denominator:

θ1 ≈ p1/2k , . . . , θm ≈ pm/2k , (1)

wherep1, . . . , pm, andk are integers.
This way the numbersθ1, . . . , θm can be approximately

represented in computer’s memory by integersp1, . . . , pm,
which, in turn, can be used for execution of basic arithmetic
operations. For example, multiplications of an input variable
x by θ1, . . . , θm can be conveniently mapped into integer in-
structions as follows:

xθi ≈ xpi/2k Ã (x ∗ pi) À k , (i = 1, . . . ,m)

where∗ andÀ denote integer multiplication and bit-wise
right shift operations correspondingly.
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The key parameter that influences the complexity of algo-
rithms using dyadic rational approximations (1) is the num-
ber of “precision bits”k. In software designs, this parameter
is often constrained by the width of registers (e.g.8, 16 or
32), and failure to meet such a constraint can possibly result
in doubling (or in some cases – quadrupling) of the execution
time. In hardware designs parameterk directly affects the
number of gates needed to implement adders and multipliers.

The precision of approximations (1) also depends on the
parameterk. Thus, givenk andθi, the best choice ofpi yields
∣∣θi−pi/2k

∣∣ = 2−k
∣∣2kθi−pi

∣∣ = 2−kmin
z∈Z

∣∣2kθi−z
∣∣ 6 2−k−1,

which means, that minimum worst case magnitude of error

∆(k) = min
p1,...,pm

max
i

{∣∣θi − pi/2k
∣∣} . (2)

is also bounded by

∆(k) 6 2−k−1 . (3)

In simple terms, this means, that on average, each bit of pre-
cision in dyadic approximations (1) reduces their worst case
error at least by half.

This last observation is crucial for understanding preci-
sion-complexity tradeoffs in conventional fixed-point designs.
It also underscores the importance of finding more efficient
(with faster decaying errors) techniques for “importing” of
real (and in particular, irrational) numbers into fixed-point al-
gorithms.

In this paper, we study one such possible technique, in-
volving the use of a “common factor”. The main idea of this
technique is to introduce an additional parameterξ and use it
for minimization of errors in approximations:

θ1ξ ≈ p1/2k , . . . , θmξ ≈ pm/2k . (4)

wherep1, . . . , pm, andk are integers.
We note, that in many practical situations, the uniform

scale of the original valuesθ1, . . . , θm by ξ can be either ig-
nored (e.g. when it has no effect on the output), or “neutral-
ized” by applying the inverse factor1/ξ to constants in adja-
cent stages of the algorithm. In other words, we assume that



the use of our modified approximations (4) instead of direct
ones (1) will be feasible in practical designs.

We show, that for infinitely manyk, by carefully choosing
the value of a common factorξ the equivalent (scaled by1/ξ)
worst case error of approximations (4):

∆ξ(k) = 1
ξ min

p1,...,pm

max
i

{∣∣θiξ − pi/2k
∣∣} (5)

can be made as small as

∆ξ(k) . 2−k
�
1+

1
m−1

�
. (6)

In other words, we show that common-factor-based ap-
proximations can be significantly more precise than direct
ones. We note that the magnitude of the achievable gain is
particularly striking for smallm. For example, whenm = 2,
the right side in (6) turns into2−2k, which implies, that the
use of a common-factor might reduce the number of required
precision bits by half!

The rest of this paper is organized as follows. Section 2
contains analysis of common-factor-based approximations and
formulation of our main results. Practical examples of using
this technique are given in Section 3.

2. PRECISION OF APPROXIMATIONS WITH
COMMON FACTORS

2.1. Minimizing errors of pairs of approximations.

Consider first a special case whenm = 2. By δ1(ξ) andδ2(ξ)
we denote individual errors of approximations (4):

δ1(ξ) = θ1ξ − p1/2k , δ2(ξ) = θ2ξ − p2/2k , (7)

and our first task would be to see ifmax {|δ1(ξ)| , |δ2(ξ)|}
can be minimized by adjustingξ.

We claim the following.

Lemma 1. Let θ1, θ2 be real numbers, such thatθ1θ2 > 0,
and letk, p1, andp2 be integers. Then, there exist valuesξ∗

andδ∗, such that

δ∗= max {|δ1(ξ∗)| , |δ2(ξ∗)|} = min
ξ

max {|δ1(ξ)| , |δ2(ξ)|} .

These values are:
ξ∗ = 1

2k
p1+p2
θ1+θ2

, (8)

and

δ∗ = 1
2k

∣∣∣ θ1
p1+p2
θ1+θ2

− p1

∣∣∣ = 1
2k

∣∣∣ θ2
p1+p2
θ1+θ2

− p2

∣∣∣ . (9)

Proof. Conditionθ1θ2 > 0 implies that bothδ1(ξ) andδ2(ξ)
are non-constant and have the same direction of growth withξ.

If δ1(ξ) andδ2(ξ) intersect0 at the same location, then
there exists pointξ∗ such thatδ1(ξ∗) = δ2(ξ∗) = 0. This
implies that

ξ∗ = 1
2k

p1
θ1

= 1
2k

p2
θ2

,
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∣∣}.

which is a special case of (8).
If δ1(ξ) andδ2(ξ) intersect0 at different locations, then

there existsξ∗ such that (see Fig. 1):

δ1(ξ∗) = −δ2(ξ∗) . (10)

Moreover, since bothδ1(ξ) and δ2(ξ) have same direction
of growth, movingξ away fromξ∗ will lead to asymmetric
changes in absolute values ofδ1(ξ) or δ2(ξ). That is, one of
them will increase. Therefore,ξ∗ is the point of minimum of
max {|δ1(ξ)| , |δ2(ξ)|}.

By solving (10) with respect toξ∗ we arrive at formula (8),
and by plugging (8) in (7), and using (10) we arrive at (9).

2.2. Associated Diophantine approximation

Let us now further assume thatp1, p2 have same signs asθ1,
andθ2. Then, by denotingp = p1, q = p1 + p2, and

θ∗ = θ1
θ1+θ2

. (11)

we observe that both parts of (9) turn into

δ∗ = |q|
2k |θ∗ − p/q| .

By further de-scaling this quantity byξ∗ we arrive at

δ∗/ξ∗ = |θ1 + θ2| |θ∗ − p/q| , (12)

which means, that by pluggingξ = ξ∗, the problem of finding
minimum of the worst case error of a pair of scaled dyadic
rational approximations

∆ξ(k) = 1
ξ min

p1,p2
max {|δ1(ξ)| , |δ2(ξ)|} .

becomes equivalent to the problem of finding rational approx-
imations of a single numberθ∗

θ∗ ≈ p/q . (13)



Furthermore, ifθ∗ is irrational, then (13) turns into a classic
Diophantine approximation problem [1].

The following result from Diophantine approximation the-
ory (cf. [1, p. 11, Theorem V]) will be useful in our context.

Fact 1. Let θ be irrational. Then there exist infinitely many
integersq andp such that

|θ − p/q| < κ(θ)q−2, (14)

where:

κ(θ) =




5−1/2 , if θ = rψ+s
uψ+v , where:

ψ =
√

5−1
2 ; r, s, u, v ∈ Z ,

such thatrv − us = ±1 ,
2−3/2 , otherwise .

(15)

2.3. Main result for approximations of pairs of constants

We state the following.

Theorem 1. Let θ1, θ2 be irrational numbers of the same
sign. Then, there exist infinitely many integersk and real
numbersξ, such that

∆ξ(k) = 1
ξ min

p1,p2
max

{∣∣θ1ξ − p1/2k
∣∣ ,

∣∣θ2ξ − p2/2k
∣∣}

< κ
(

θ1
θ1+θ2

)
4

|θ1+θ2| 2
−2k = O

(
2−2k

)
. (16)

Proof. We use the following construction.
By assuming thatξ = ξ∗, and solving the associated Dio-

phantine approximation problem (13), we find integersp, q
satisfying precision constraint (14) of Fact 1. This also gives
us integer factorsp1 = p andp2 = q − p for our dyadic ap-
proximations. In order to selectk, we can use some additional
constraints. For example, we can require

1/2 < ξ∗ 6 1 , (17)

which is satisfied by choosingk = dlog2 (q/(θ1 + θ2))e.
Then, by plugging Diophantine precision bound (14) in

(12), using lower bound forξ∗ from (17), and some simple
algebra, we arrive at expression (16) claimed by the theorem.

2.4. Extension of analysis tom-ary case

We now turn our attention to a problem of finding dyadic ra-
tional approximations for larger(m > 2) sets of numbers:

θ1ξ ≈ p1/2k , . . . , θmξ ≈ pm/2k . (18)

For simplicity, we assume that all numbersθ1, . . . , θm and
p1, . . . , pm are either positive or negative.

From Lemma 1, we know that for any pair of numbers
θi, θj , i 6= j, we can compute factor

ξ∗ij = 1
2k

pi+pj

θi+θj
, (19)

which will “symmetrize” errors of approximations:

δ∗ij = 1
2k

∣∣ θi
pi+pj

θi+θj
− pi

∣∣ = 1
2k

∣∣ θj
pi+pj

θi+θj
− pj

∣∣ . (20)

and which will turn them into a Diophantine approximation:

δ∗ij = |qij |
2k

∣∣ θ∗ij − pij/qij

∣∣ . (21)

wherepij = pi, qij = pi + pj , and

θ∗ij = θi

θi+θj
. (22)

By applyingξ∗ij to the remaining constants{θk, k 6= i, j},
we note that their approximations also turn into Diophantines
∣∣θkξ∗ij − pk/2k

∣∣ = 1
2k

∣∣θk
pi+pj

θi+θj
−pk

∣∣ = |qij |
2k

∣∣ θ∗k|ij−pk/qij

∣∣ ,

where, however, the resulting constants

θ∗k|ij = θk

θi+θj
, (23)

and errors of their approximations are different.
This means that by using factorξ∗ij we can reduce the

problem of findingm dyadic rational approximations (18) to
one of findingm − 1 simultaneous Diophantine approxima-
tions:

θ∗ij ≈ pij/qij ,
{
θ∗k|ij ≈ pk/qij , k 6= i, j

}
. (24)

The relevant result from Diophantine approximation the-
ory is given below (cf. [1, p. 14, Theorem III], [2, p.138]):

Fact 2. Let θ1, . . . , θm, (m > 2) be irrationals. Then, there
are infinitely many integersq andp1, . . . , pm, such that

max
i
{|θi − pi/q|} < m

m+1 q−1−1/m . (25)

We are now ready to formulate and prove our main result.

Theorem 2. Let θ1, . . . , θ2 bem > 2 irrational numbers of
the same sign. Then, there exist infinitely many integersk and
real valuesξ, such that

∆ξ(k) = 1
ξ min

p1,...,pm

max
i

{∣∣θiξ − pi/2k
∣∣}

< m−1
m

(
min

ij
{|θi + θj |}

)− 1
m−1 2−(k−1)

�
1+

1
m−1

�
= O

(
2−k

�
1+

1
m−1

�)
. (26)

Proof. We use the following construction.
We scan all

(
m
2

)
pairs of indicesi, j, and find a pair, for

which the normalized (by1/ξ∗ij) worst case error:

1
ξ∗ij

min
pij ,pk

|qij |
2k max

{∣∣θ∗ij − pij

qij

∣∣,
∣∣θ∗k|ij − pk

qij

∣∣, k 6= i, j
}

= |θi + θj | min
pij ,pk

max
{∣∣θ∗ij − pij

qij

∣∣, ∣∣θ∗k|ij − pk

qij

∣∣, k 6= i, j
}

is the smallest one.
Then, by applying Fact 2, using (19) to replaceqij with

2k andξ∗ij , and subsequently, bounds1/2 < ξ∗ij 6 1 (which
is attainable by choice of k), and|θi +θj | > minij{|θi +θj |},
we arrive at estimate (26) claimed by the theorem.



Table 1. Approximations of a pair of constantsθ1 = cos
(

π
16

)
, andθ2 = cos

(
7π
16

)
.

Direct dyadic approximations: Associated Diophantine approximation: Dyadic approximations with common factorξ∗:
θ1 ≈ p1/2k, θ2 ≈ p2/2k θ∗ = θ1/(θ1+θ2) ≈ p/q θ1ξ∗ ≈ p1/2k, θ2ξ∗ ≈ p2/2k

k p1 p2 maxi

��θi− pi/2k
�� q p |θ∗−p/q| ξ∗ = 1

2k
q

θ1+θ2
p1 p2

1
ξ∗ maxi

��θiξ
∗−pi/2k

��
1 2 0 0.1950903220
2 4 1 0.0549096780
3 8 2 0.0549096780 6 5 0.0007559856 0.6378225711 5 1 0.0008889451
4 16 3 0.0192147196
5 31 6 0.0120352804
6 63 12 0.0075903220
7 126 25 0.0035897196
8 251 50 0.0003165304
9 502 100 0.0003165304 440 367 0.0000015901 0.7308383627 367 73 0.0000018698

10 1004 200 0.0003165304
11 2009 400 0.0002221780 1543 1287 0.0000001172 0.6407293146 1287 256 0.0000001378

Table 2. Approximations of a pair of constantsθ1 = cos
(

3π
16

)
, andθ2 = cos

(
5π
16

)
.

Direct dyadic approximations: Associated Diophantine approximation: Dyadic approximations with common factorξ∗:
θ1 ≈ p1/2k, θ2 ≈ p2/2k θ∗ = θ1/(θ1+θ2) ≈ p/q θ1ξ∗ ≈ p1/2k, θ2ξ∗ ≈ p2/2k

k p1 p2 maxi

��θi− pi/2k
�� q p |θ∗−p/q| ξ∗ = 1

2k
q

θ1+θ2
p1 p2

1
ξ∗ maxi

��θiξ
∗−pi/2k

��
1 2 1 0.1685303877
2 3 2 0.0814696123 5 3 0.0005438163 0.9011997775 3 2 0.0007542949
3 7 4 0.0555702330
4 13 9 0.0189696123
5 27 18 0.0122803877
6 53 36 0.0069297670
7 106 71 0.0033446123
8 213 142 0.0008827330 367 220 0.0000011428 1.0335634948 220 147 0.0000015851
9 426 284 0.0008827330

10 851 569 0.0004149248
11 1703 1138 0.0000938295 2207 1323 0.0000000918 0.7769327769 1323 884 0.0000001273

3. EXAMPLE OF DESIGN USING COMMON
FACTORS - BASED APPROXIMATIONS

As an example, let us consider a design of an 8x8 Discrete Co-
sine Transform (DCT) proposed by M. Vetterli and A. Ligten-
berg [3]. We notice, that this is a scaled transform (that is,
we can move leading factors outside 1D transforms), and that
its 1-stage odd butterflies involve multiplications by pairs:
(C1, C7), and(C3, C5), whereCk = cos

(
kπ
16

)
. Hence, we

can introduce common factors for each of these pairs.
We illustrate the process of deriving scaled approxima-

tions for these pairs in Tables 1, and 2. First large columns in
these tables illustrate the use of direct dyadic rational approxi-
mations. It is shown, that their worst case errors decay relati-
vely slowly. Second large columns show solutions for the as-
sociated Diophantine approximations. We note that these re-
sults are sparse (not every denominatorq leads to a precision
stated by Fact 1), but their errors decay very rapidly. Finally,
in third columns, we show parameters of approximations with
common factors, derived from Diophantine solutions.

It can be seen, that common-factor-based approximations
are remarkably more precise than the original dyadic rational
approximations. For example, the top3-bit solution from Ta-
ble 1, reaches precision which would be normally achievable
by using8 bits. Similar observation can also be made regard-
ing the top (2-bit) common-factor-based solution in Table 2.

In passing, we should note that for some applications pre-
cision of those top solutions might already be sufficient. Thus,
using these solutions we were able to design an inverse (IDCT)
transform passing all compliance tests of the JPEG standard.
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