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Abstract

We offer novel algorithms for efficient encoding/decoding of variable-to-fixed length
codes, requiring at most quadratic amount of space: O(L2), where L is the depth of
a coding tree. This is a major improvement compared to exponential O(2L) usage
of space by conventional techniques using complete representations of coding trees in
computer’s memory.

These savings are achieved by utilizing algebraic properties of VF coding trees con-
structed by using Tunstall or Khodak algorithms, and employing combinatorial enumer-
ation techniques for encoding/decoding of codewords. The encoding/decoding complex-
ity of our algorithms is linear with the number of symbols they process.

As a side product, we also derive an exact formulae for the average redundancy of
such codes under memoryless sources, and show its usefulness for analysis and design
of codes with small number of codewords.

1 Definitions

Consider a memoryless source S producing symbols from an input alphabet A = {a1, . . . , am}
(2 6 m < ∞) with probabilities {pi = P (ai), i = 1, . . . , m}. By pmin, pmax we denote the
probabilities of the least- and the most-likely symbols correspondingly, and assume that
0 < pmin 6 pmax < 1.

Assume that a message Σ = {aik}∞k=1 is an infinite-length sequence of symbols produced
by the source S. The main idea of variable length coding is to define a set of words
X = {xj ∈ A∗, j = 1, . . . , M} (m 6 M < ∞), such that any message Σ can be uniquely
represented by a sequence of words from X, and then map these words xj into codewords
φ(xj) formed from letters of an output alphabet B = {b1, . . . , bn} (2 6 n < ∞):

{aik}∞k=1 = {xjr}∞r=1 → {φ (xjr)}∞r=1 = {bis}∞s=1 .

We further assume that the mapping φ is injective, and that the output code {φ (xj)} is
uniquely decodable [4].

In this paper we only consider coding systems producing codewords φ(xj) with the same
length. For example, we can simply pick |φ(xj)| = dlogn Me (1 6 j 6 M), and use indices
of words xj to produce their codes. Such coding systems are called variable-length-to-block
(VB) or variable-to-fixed-length (VF) codes.
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The problem of construction of a VF code for a given source S consists in finding a prefix-
free set X of constrained size |X| 6 M , such that the average redundancy of encoding of
this source:

RVF(X,S) =
dlg Me
d(X, S)

− h(S) . (1)

is minimal. Here d(X,S) denotes the average delay (or average length of a word in X):

d(X, S) =
M∑

j=1

P (xj) |xj | , (2)

and h(S) is the entropy of the source:

h(S) = −
m∑

i=1

pi lg pi . (3)

In some cases it might be sufficient to find prefix set X minimizing the idealized average
redundancy :

R∗
VF(X,S) =

lg M

d(X, S)
− h(S) . (4)

but these problems are very similar.

2 Tunstall and Khodak Algorithms

The best known algorithm for construction of optimal VF-codes for memoryless sources
is one, due to B.P.Tunstall [21] (see also [6]). It is remarkably simple: start with a tree
∆(1) consisting of a single node connected to m leaves, corresponding to letters of input
alphabet A. Then, pick a leaf corresponding to a letter with highest probability and replace
it with a node connected to m new leaves. Repeat this process successively, picking at
each step a leaf corresponding to a word with highest probability. It can be seen that
after i steps this algorithm produces a tree ∆(i) with (m − 1)i + 1 leaves (corresponding
to a prefix-free set of words X(∆(i))) which can be easily enumerated and mapped into
dlg((m− 1)i + 1)e-digit codes.

In Figure 1 we show an example of a code produced by Tunstall algorithm for a binary
memoryless source with P (1) = 0.2 after 16 iterations.

Tunstall algorithm has been very well studied and found a number of applications in
coding theory and beyond. Simple bounds for its redundancy have been independently
obtained by Khodak [7] and Jelinek and Schneider [6]. Generalizations of Tunstall code
for sources with memory have been proposed by Tjalkens and Willems [18] and Savari and
Gallager [13]. More accurate asymptotic analysis of its redundancy (4) has been offered
by Savari [14], and most recently, by Drmota, Reznik, Savari, and Szpankowski [5]. Appli-
cations of Tunstall algorithm for approximation of uniform distributions, random number
generation, and related problems, have been discussed in [2].

Nevertheless, we must stress that Tunstall algorithm is not the only technique available
for construction of variable-to-fixed-length codes. Thus, in 1969 G. L. Khodak has suggested
the following construction procedure [7] (see also [8], [10]). Start with a tree containing a
single node and grow it progressively until all its leaves x satisfy:

1
N

6 P (x) <
1

N pmin
, (5)
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Code Word Pr
0 11 0.04
1 011 0.032
2 101 0.032
3 0001 0.1024
4 0010 0.1024
5 0100 0.1024
6 1000 0.1024
7 0011 0.0256
8 0101 0.0256
9 1001 0.0256
10 00001 0.08192
11 000001 0.065536
12 0000001 0.0524288
13 00000001 0.041943
14 000000001 0.0335544
15 0000000000 0.107374
16 0000000001 0.0268435
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Figure 1: Example VF-code for binary source with P (1) = 0.2 (obtained by using either
Tunstall algorithm with 16 iterations, or Khodak algorithm with N=40).

where N is a fixed real number (N > 1/pmin).
Condition (5) implies that the total number of leaves in the resulting tree ∆N satisfies:

|X(∆N)| 6 N , (6)

so by picking different values of N one can control the size of the resulting trees (although
with certain granularity, since (5) applies to all leaves). It can also be shown (e.g. using [6,
Lemma 6]), that a tree ∆N constructed by Khodak algorithm with parameter N is exactly
the same as the tree ∆(iN ) constructed by Tunstall algorithm after iN = |X(∆N)|−1

m−1 steps.
In other words, both algorithms can be used to solve the same problem. Tunstall

algorithm has an advantage of providing an explicit control over the number of leaves
in the resulting trees. Khodak scheme, on the other hand, provides a simple algebraic
characterization of the coding tree (5), which, as we will show in this paper, can be used to
perform its direct construction, and leads to exact formulae of redundancy of such codes.

3 Enumeration of Nodes in VF Coding Trees

We first prove two simple lemmas allowing us directly enumerate internal nodes in VF-
coding trees.

Lemma 1. Probabilities of internal nodes w in a tree ∆N satisfying Khodak condition (5)
have the following property:

P (w) > 1
N pmin

(7)

Proof. Follows directly from condition (5) and the fact that P (w) must be greater than the
probability of a leaf.

Lemma 2. Any string w ∈ A∗ such that:

P (w) > 1
N pmin

(8)

leads to an existing internal node in a tree ∆N satisfying Khodak condition (5).
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Proof. If this is not correct, then there must exist a prefix u: w = uv, |u| > 0, |v| > 0,
leading to an external node. Then, according to (5) we must have P (u) < 1

N pmin
, which,

however, contradicts (8) and the fact that P (w) = P (u)P (v) < P (u).

Next, we derive somewhat tighter bounds for probabilities of leaves in trees constructed
using Khodak’s algorithm.

Lemma 3. Leaves x attached to α-branches (α ∈ A) in a tree ∆N satisfying condition (5)
have the following properties:

P (α)
N pmin

6 P (x) = P (wα) <
1

N pmin
(9)

Proof. Consider an internal node corresponding to a string w. Its children correspond to
single-letter extensions of w: wα, α ∈ A. If now, a node wα becomes an external node,
then, according to Khodak condition (5) it must satisfy:

P (wα) = P (w)P (α) <
1

N pmin
. (10)

Since w is internal (cf. Lemma 1):

P (w) > 1
N pmin

. (11)

Combining both we arrive at (9).

It turns out that this condition is sufficient for direct counting of leaves.

Lemma 4. All strings w ∈ A∗ such that:

P (α)
N pmin

6 P (wα) <
1

N pmin
(12)

correspond to internal nodes whose α-branches are immediately connected to leaves in a tree
∆N satisfying Khodak condition (5).

Proof. Left side of (12) ensures that w is a valid internal node in ∆N (cf. Lemma 2). It
also implies that (5) is satisfied for wα, so it must be a leaf.

Remark 1. Note, that while original Khodak’s condition (5) is formulated as limits on
probabilities of leaves, it cannot be used for their direct enumeration. In order to use (5),
one has to maintain a tree structure and grow it progressively until all its leaves satisfy (5).
Our condition (12) can be used directly, without building a tree structure.

4 Structure of VF Coding Trees

Lemma 4 implies that all words in a VF-code ∆N for memoryless source can be enumerated
as follows:

X (∆N ) =
⋃

k1+...+km=`, i
pi

Npmin
6p

k1
1 ...pkm

m pi<
1

Npmin

X(`,k1,...,km),i (13)
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Figure 2: Structure of an example VF-code for memoryless source.

where each group X(`,k1,...,km),i, contains
(

`
k1,...,km

)
words of length ` + 1, terminating on

i-th symbol, and having probabilities pk1
1 . . . pkm

m pi, where k1, . . . , km indicate numbers of
symbols of each kind in their first ` positions.

In a binary case, with P (1) = p, P (0) = q, p < q, equation (13) can be rewritten as:

X (∆N ) =
⋃

06k6`, α
P (α)
Np

6pkq`−kP (α)< 1
Np

X(`,k),α (14)

and where groups X(`,k),α are formed by
(

`
k

)
words of length ` + 1, in which first `-bits

contain k ones, and the last symbol is α.
We illustrate the structure of such a partition in Fig. 2. This VF-code is identical to

our previous example (see Fig. 1).
It can be observed that for each level `, the number of groups X(`,k),α belonging to this

level is at most 2 (` + 1) (which corresponds to a case when the tree is a complete tree with
all leaves located at level `). Hence, the total number of groups containing in L levels of
the tree ∆N is at most O

(
L2

)
. This is significantly less than the total number of nodes or

leaves containing in a tree of the same depth (which is typically exponential: O
(
2L

)
).

5 Enumerative Construction of VF-Codes

Using the above observations we can now design an algorithm for enumerative construction
of VF-codes. An example of a possible compact data structure and C-code of a construction
procedure for binary memoryless sources is given in Algorithm 1.

The data structure used by Algorithm 1, stores only parameters `, k, α of each group
X(`,k),α and parameter offset , representing the value of the first codeword in a group. As
discussed earlier, the size of such a representation of VF-coding tree in computer’s memory
is at most O(L2), where L is the height of a tree.
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Algorithm 1 VF-code group structure and algorithm for direct construction of VF-codes.

/* VF-Code Group structure: */
typedef struct {

unsigned char l,k,a; /* l - prefix length; k - # of ones; a - last symbol */
unsigned int offset; /* code of the lexicographically smallest word in the group */

} VFCG;

int make_code (double p, double N, int L, VFCG *vfcg)
{

int k,l,j=0,M=0; // j = group #; M = # of codewords
for (l=0; l<=L; l++) { // l = length of words w; L = max. length

for (k=0; k<=l; k++) { // k = number of ones in w
/* compute probability of an l-bit word with k ones: */
double pr = pow(p,k) * pow(1-p,l-k);
/* internal nodes? */
if (pr >= 1/(N * p)) {
/* check if left extensions turn into leaves: */
if (pr < 1/(N * p * p)) {

/* register an l,k,0 group: */
vfcg[j].l = l; vfcg[j].k = k; vfcg[j].a = 0;
vfcg[j].offset = M;
j ++;
M += binomial(l,k);

}
/* check if right extensions turn into leaves: */
if (pr < 1/(N * p * (1-p))) {

/* register an l,k,1 group: */
vfcg[j].l = l; vfcg[j].k = k; vfcg[j].a = 1;
vfcg[j].offset = M;
j ++;
M += binomial(l,k);

}
}

}
}
/* set end-of-list record & return # of codewords */
vfcg[j].offset = M;
return M;

}

Algorithms 2 and 3 present encoding and decoding procedures using this data structure.
For the purpose of illustration of the idea, in both cases we employ simple linear search for
matching group. The number of search items in both cases is at most O(L2).

Practical implementations may employ more sophisticated searching algorithms, which
could result in much faster decoding. For example, the use of binary search should result in
only O(log L) steps, which is much faster that O(L) steps needed for parsing of the original
VF-coding tree.

In order to compute a code for a word w belonging to a group X(`,k),α, Algorithm 2
computes lexicographic index of `-bits prefix of w in a set of all `-bits long words with k
ones. This procedure in Algorithm 2 is denoted as index(`, k, w). Similarly, Algorithm 3
uses the reverse process, denoted as word(`, k, i), which generates i-th word from X(`,k),α.
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Algorithm 2 Encoding of a VF-code using list of groups in a coding tree.

/* Variable-to-fixed-length encoder: */
void vfc_encode (BITSTREAM *in, unsigned *code, VFCG *vfcg)
{

unsigned l, k, j, i, w;
for (l=0,k=0,j=0,w=0; ; ) {

i = get_bit(in); // read next bit
while (l == vfcg[j].l) { // see if we have a match

if (k == vfcg[j].k && i == vfcg[j].a)
goto found;

j ++;
}
w = w *2 + i; k += i; l ++; // include l-th bit in prefix

}
found:

i = index(l,k,w); // get lexicographic index of the prefix
*code = vfcg[j].offset + i // compute codeword

}

Algorithm 3 Decoding of a VF-code using list of groups in a coding tree.

/* Variable-to-fixed-length decoder: */
void vfc_decode (unsigned code, BITSTREAM *out, VFCG *vfcg)
{

unsigned i, j, w;
for (j=0; code > vfcg[j+1].offset; j++) ; // find a subgroup containing the code
i = code - vfcg[j].offset; // i = lexicographic index of a prefix
w = word(vfcg[j].l,vfcg[j].k,i); // generate i-th word in an (l,k) set
w = w * 2 + vfcg[j].a; // append last bit
put_bits(w, vfcg[j].l+1, out); // output decoded word

}

We note that for reasonably short words (e.g. ` 6 10 . . . 16) computation of their
lexicographic indices (or synthesis of words, using their indices), can be a matter of a single
lookup. For longer words, we can use the following well-known combinatorial formula (cf.
[11], [1], [15], [3], [19], [20]):

index(`, k, w) =
∑̀

j=1

wj

(
`− j∑`
k=j wk

)
, (15)

where wj represent individual bits of the word w, and it is assumed that
(

`
k

)
= 0 for all

k > `. In order to implement it, one could either pre-compute all binomial coefficients up
to level ` in Pascal’s triangle, or compute them dynamically, using the following simple
identities: (

`− k

k − 1

)
=

k

`

(
`

k

)
, and

(
`− k

k

)
=

`− k

`

(
`

k

)
.

The implementation based on pre-computed coefficients requires ` (`+1)
2 = O

(
`2

)
words

of memory, and O(`) additions. Dynamic computation of coefficients will require O(`)
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additions, multiplications and divisions, but the entire process needs only few registers.
Additional discussion on complexity of index computation can be found in [20].

6 Exact Redundancy of VF-codes

In this section we claim the following result:

Theorem 1. VF-codes based on a tree ∆N satisfying Khodak condition (5) have the fol-
lowing redundancies:

RVF(∆N , S) =
dlg (M(N, S))e

d(N, S)
− h(S) , R∗

VF(∆N , S) =
lg (M(N, S))

d(N,S)
− h(S) , (16)

where:

d(N, S) =
∑

`

∑

k1 + . . . + km = `

pk1
1 . . . pkm

m > 1
N pmin

(
`

k1, . . . , km

)
pk1
1 . . . pkm

m , (17)

and

M(N, S) = 1 + (m− 1)
∑

`

∑

k1 + . . . + km = `

pk1
1 . . . pkm

m > 1
N pmin

(
`

k1, . . . , km

)
. (18)

Proof. By X(∆) and W (∆) we denote sets of strings leading to all external and internal
nodes in ∆, correspondingly. To derive an expression for the average delay, we use the fact
that [16, 10]:

d(∆, S) =
∑

x∈X(∆)

P (x)|x| =
∑

w∈W (∆)

P (w) , (19)

and then simply enumerate all internal nodes using condition (8) of Lemma 2:

d(N,S) := d(∆N , S) =
∑

w∈A∗: P (w)> 1
N pmin

P (w)

=
∑

`

∑

k1 + . . . + km = `

pk1
1 . . . pkm

m > 1
N pmin

(
`

k1, . . . , km

)
pk1
1 . . . pkm

m . (20)

Similarly, to count the number of external nodes, we use the fact that:

|X(∆)| = 1 + (m− 1) |W (∆)| , (21)

and apply Lemma 2:

M(N, S) := |X(∆N )| = 1 + (m− 1)
∑

w∈A∗: P (w)> 1
N pmin

1

= 1 + (m− 1)
∑

`

∑

k1 + . . . + km = `

pk1
1 . . . pkm

m > 1
N pmin

(
`

k1, . . . , km

)
. (22)
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6.1 Exact Redundancy in Binary Case

In binary case, assuming that P (1) = p, P (0) = q, p < q, the condition (8) becomes

P (w) = pkq`−k > 1
Np

(23)

where k denotes the number of ones in the path from root to node w in the parsing tree,
and ` is the total length of this path. The above inequality implies that:

k 6 − log(Np) + ` log q

log(p/q)
(24)

and (by requiring k > 0):

` 6 − log(Np)
log q

. (25)

Using these expressions we obtain:

Corollary 1. VF-codes for binary memoryless source with probabilities p, q (p < q) have
the following redundancies:

RVF(∆N , p) =
dlg (M(N, p))e

d(N, p)
− h , R∗

VF(∆N , p) =
lg (M(N, p))

d(N, p)
− h , (26)

where:

d(N, p) =
∑

06`6
j
− log(Np)

log q

k ∑

06k6min
n

`,
j

log(Np)+` log q
log(q/p)

ko
(

`

k

)
pkq`−k , (27)

M(N, p) = 1 +
∑

06`6
j
− log(Np)

log q

k ∑

06k6min
n

`,
j

log(Np)+` log q
log(q/p)

ko
(

`

k

)
, (28)

and h = −p lg p− q lg q is the entropy of the source.

The obtained expressions (27) and (28) are well suited for evaluations using computers.
Examples of such computations (conducted using MAPLE) for binary sources with p = 2

5

(a case when ln p
ln q is irrational) and p = 2

3+
√

5
(a case when ln p

ln q = 2) are shown in Fig. 2. For
comparison, in Fig. 2 we also include plots of idealized redundancy computed using known
asymptotic formulae [5].

Based on these plots it can be seen that exact redundancy of VF-codes RVF(M, p)
involves significant fluctuations caused by rounding of codeword lengths to integral number
of bits. While the magnitude of those oscillations is decreasing as O(1/ log M), they are
of major effect when the size of VF-coding trees is constrained. In such cases our exact
redundancy formula can be used as a tool for optimal design of such codes.

In contrast, the idealized redundancy R∗
VF(M, p) has a much smaller amplitude of oscil-

lations in a case when ln p
ln q is irrational, and it is oscillation-free in the rational case. In both

cases, asymptotic formulae from [5] provide very good approximations to the exact values
of R∗

VF(M,p).
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Plots for p=2/5 (irrational case)

0

0.05

0.1

0.15

0.2

0.25

Re
du

nd
an

cy

.1e2 .1e3 .1e4 .1e5

M

Plots for p=2/(3+sqrt(5)) (rational case)
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Figure 3: Exact average redundancy RVF(M, p) (dashed lines) vs. exact idealized redun-
dancy R∗

VF(M, p) (solid lines) vs asymptotic idealized redundancy (dotted lines) of VF-codes
constructed for binary memoryless sources with p = 2

5 and p = 2
3+
√

5
.
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