
Codes for Unordered Sets of Words
Yuriy A. Reznik

Qualcomm Inc., San Diego, CA
Email: yreznik@ieee.org

Abstract—We study the problem of coding of unordered sets
of words, appearing in language processing, retrieval, machine
learning, computer vision, and other fields. We review known re-
sults about this problem, and offer a code construction technique
suitable for solving it. We show that in a memoryless model the
expected length of our codes approaches Ht − logm! + O(m)
where m is the number of words in the set, t is the combined
length of all words, and H is the entropy of the source. We also
offer design of a universal code for sets of words and perform
its redundancy analysis.

I. INTRODUCTION

The classic problem of source coding is to encode a given
sequence of words (or a message) w = w1, w2, . . . such
that the length of the code is minimal. Most commonly, it
is further assumed that words must be decoded in the same
order as they appear, and that the result of decoding must
be unique and matching the original. This setting, coupled
with the assumption about stochastic nature of the source, has
lead to many fundamental results, including Shannon’s source
coding theorem, Huffman codes, and others [1].

Nevertheless, in practice we may also encounter a slightly
different problem: the message may be given by a set of
words {w1, . . . , wm}, where their order is not important. This
happens, for example, when we formulate a request to a search
engine by providing a list of keywords. Such keywords can
be communicated in any order, without affecting the meaning
of the message. Given this flexibility, one may expect a
code constructed for a set {w1, . . . , wm} to consume about
log2 m! less bits than a code constructed for a particular
sequence wi1 , . . . , wim . However, the construction of codes
for unordered sets does not appear to be entirely trivial: most
existing source coding tools assume sequential processing.
Somewhat different approach is needed in this case.

The purpose of this paper is to offer one possible method
for solving this coding problem. The key tool that we employ
comes from information retrieval: it is a digital search tree or
DST structure, due to E. Coffman and J. Eve [9]. It is similar, in
a sense, to the prefix tree or incremental parsing rule of J. Ziv
and A. Lempel’s code [19]. However, the prefix tree always
parses a single sequence, while the DST is designed to parse
a set of sequences. DST is also different than parsing trees
used by Tunstall or Khodak codes [20]–[22], CTW [23], and
other conventional source coding algorithms. Once the DST
is constructed, we use Zacks ranking scheme [24] to compute
its lexicographic index, and then we transmit it. Finally, to
encode parts of input words that are not “absorbed” by the
tree structure, we define a canonic order of nodes in the tree,

and transmit missing parts of words according to this order.
We provide detailed analysis of the average performance of
this scheme in the memoryless model, and show that, under
certain conditions, it asymptotically approaches the expected
log2 m! reduction in the bitrate. We also describe and analyze
design of universal codes based on DST-encoding technique.

Among related prior studies, we must mention 1986 work of
A. Lempel [5], who predicted existence of multiset decipher-
able codes, and shown that such codes should be more com-
pact than conventional (uniquely decipherable) codes when
m > 3. Another related class of codes (for words over partially
commutative alphabet) was studied by S. Savari [6]. The
achievable performance bounds for coding of sets were studied
by L. Varshney and V. Goyal [7]. Properties of DST and
related structures were studied in [3], [10]–[16]. Techniques
for coding of trees were discussed in [24]–[26]. Descriptions
of other known uses of coding of trees in data compression
can be found in [29]–[31]. The problem of construction of
codes for unordered sets was first considered by the author
in [8]. This paper is an extension of that work.

In Section II we provide detailed description of our tech-
nique. In Section III, we study asymptotic performance of the
resulting coding scheme in the memoryless model. Section IV
shows how our scheme can be adopted to construct universal
codes. Conclusions are drawn in Section V.

II. CODING OF SETS OF WORDS

Let {w1, . . . , wm} be a set of words that we need to encode.
For simplicity, we will assume that these words are binary, of
length |wi| = n, and produced by a symmetric memoryless
source. That is, characters “0” and “1” have same probability
1/2. The entropy rate of such source is 1 bit/character [1],
implying, that conventional sequential encoding of words
w1, . . . , wm will cost at least mn bits.

Hereafter, we will often refer to an example shown Table I.
In this case: m = 8, n = 5, and the total length mn = 8×5 =
40 bits.

A. Tree-based representation

In order to construct a compact representation of the set
{w1, . . . , wm}, we employ a data structure, known as digital
search tree or DST [3], [9], [10]. We start with a single root
node, and assume that it corresponds to an empty word. We
then pick our first word w1, and depending on the value of
its first character, we add left or right branch to the root
node, and insert a new node there. We also store pointer
to w1 in that node. With second and subsequent words, we

TABLE I
EXAMPLE SET OF BINARY WORDS {w1, . . . , wm}.

Index Word DST path Suffix
i wi pi si
1 01011 0 1011
2 00111 00 111
3 10001 1 0001
4 01010 01 010
5 10010 10 010
6 00001 000 01
7 00110 001 10
8 00000 0000 0

Bits: 8× 5 = 40 18 22

traverse the tree starting from the root node, by following
characters in a current word, and once we hit the leaf (a node
with no continuation in the direction of interest), we extend
it by creating a new node and storing pointer to the current
word in it. This process is repeated m times, so that all words
from our input set {w1, . . . , wm} are inserted.

The DST structure constructed over our example set is
shown in Fig.1. The paths from root to other nodes in the
tree correspond to portions (prefixes) of words inserted in this
structure. We list such prefixes in the third column in Table I.
The forth column in Table I lists the remainders (suffixes) of
each word. In other words, we observe that DST construction
effectively “splits” words wi (i = 1, . . . ,m) in two parts:

wi = pi si,

where pi are prefixes covered by paths in the tree, and si
are the remaining suffixes. Overall lengths of prefixes and the
suffixes will be denoted by

Pm =
m
∑

i=1

|pi|, and Sm =
m
∑

i=1

|si| = mn− Pm (1)

correspondingly. In our example, shown in Fig. 1, the overall
DST path length is Pm = 18, and the length of the remaining
suffixes is Sm = 40− 18 = 22.

B. Encoding of a tree

Our next task is to encode the structure of the DST
efficiently. More specifically, we need to encode the shape of
its binary tree. This tree contains i = m+ 1 nodes (m nodes
associated with input words + root).

We start by scanning the tree recursively, by using pre-order
tree traversal [4], and assigning labels “1” to the existing
nodes, and ”0” to missing ones (see Fig. 2). We call the
resulting sequence of labels an x-sequence. It is known, that
this sequence contains 2i+1 digits, and that it can serve as a
unique representation of a tree with i nodes [2], [24]. Indeed,
x-sequence may also serve as a code, but as we shall show,
more compact representation is possible.

In general, it is known, that the total number of possible
rooted binary trees with i nodes is given by the Catalan
number [2, Section 2.3.4.4]:

Ci =
1

i+ 1

(

2i
i

)

, (2)

Fig. 1. Digital search tree (DST) structure constructed over our example set
of words. We use commas to separate prefix (matching path from the root)
and suffix parts of words.

Fig. 2. Encoding of a binary tree. The numbers in nodes show order in which
they are visited during pre-order tree traversal [4]. Present and missing nodes
are labeled with 1’s and 0’s correspondingly. Scan of these labels produces a
sequence: x = 1111100010010011000.

implying, that a tree can be uniquely represented by only

dlog2 Cie ∼ 2 i− 3
2 log2 i+O (1) [bits]. (3)

We next briefly describe one possible coding technique [24]
that achieves this rate.

Given an x-sequence for a tree, we produce a list of
positions of symbols “1” in it. We will call it a z-
sequence z = z1, . . . , zi. For example, for a sequence x =
1111100010010011000, corresponding to a tree in Fig. 2, we
produce: z = 1, 2, 3, 4, 5, 9, 12, 15, 16. We next define a rule
for incremental reduction of z-sequences. Let j∗ be the largest
j, such that zj = j. By z∗ = z∗1 , . . . , z∗i−1 we will denote a
new sequence that omits value zj∗ , and subtracts 2 from all
subsequent values in the original sequence:

z∗j =
{

zj, j = 1, . . . , j∗ − 1;
zj+1 − 2, j > j∗.

Then, a lexicographic index (or Zaks rank Z) of a tree is
recursively computed as follows:

Z(z) =
{

1, if j∗ = i;
ai,j∗ + Z(z∗), if j∗ < i, (4)

where

ai,j =
j + 2
2i− j

(

2i− j
i − j − 1

)

, 0 6 j 6 i− 1

are some constants [24].
For example, for a tree in Fig. 2, Zaks algorithm (4)

produces:

Z(1, 2, 3, 4, 5, 9, 12, 15, 16) = a9,5 + Z(1, 2, 3, 4, 7, 10, 13, 14);
Z(1, 2, 3, 4, 7, 10, 13, 14) = a8,4 + Z(1, 2, 3, 5, 8, 11, 12);

Z(1, 2, 3, 5, 8, 11, 12) = a7,3 + Z(1, 2, 3, 6, 9, 10);
Z(1, 2, 3, 6, 9, 10) = a6,3 + Z(1, 2, 4, 7, 8);

Z(1, 2, 4, 7, 8) = a5,2 + Z(1, 2, 5, 6)
Z(1, 2, 5, 6) = a4,2 + Z(1, 3, 4)
Z(1, 3, 4) = a3,1 + Z(1, 2)
Z(1, 2) = 1;

resulting in

Z(1, 2, 3, 4, 5, 9, 12, 15, 16)
= a9,5 + a8,4 + a7,3 + a6,3 + a5,2 + a4,2 + a3,1 + 1
= 154 + 110 + 75 + 20 + 14 + 4 + 3 + 1
= 381.

The code of this tree is simply a binary record of its index:

Bindlog2 Cm+1e(Z) = Bin13(381) = 0000101111101.

As easily observed, this code is considerably shorter that
Pm = 18 bits of prefix data stored in this tree.

We are now ready to describe the remaining steps in our
coding scheme for sets of words.

C. Encoding and decoding algorithms

Given a set of m words {w1, . . . , wm}, our encoding
algorithm performs the following operations:

1) Build, encode, and transmit DST structure over the input
set {w1, . . . , wm};

2) Traverse the tree and define a canonic order for nodes
i1, . . . , im and prefixes pi1 , . . . , pim stored in the DST;

3) Encode and transmit suffixes according to canonic order:
si1 , . . . , sim .

The construction of the DST structure and its encoding
is performed as discussed in previous sections. To define a
canonic order of nodes we use the standard pre-order tree
traversal [4], and assign each node a serial number, starting
with 0, assigned to the root node (see Fig. 3). As we reach
a j-th node during the traversal, we can also recover prefix
of a word wij that was inserted in it. This produces an order
i1, . . . , im in which prefixes of all words from our set can be
retrieved from the tree. We omit the root node (and empty
word that it contains) in this sequence. For example, for a tree
in Fig. 3, this produces i1 = 1, i2 = 2, i3 = 6, i4 = 8, i5 =
7, i6 = 4, i7 = 3, i8 = 5. In order to transmit information
about corresponding suffixes, we simply arrange and encode
them in the same order: si1 , . . . , sim . Any standard source
coding technique (such as Shannon, Huffman, or arithmetic
codes) can be applied for this sequence.

The decoder performs the inverse sequence of operations:

Fig. 3. Canonic order of nodes and words as they are encoded/decoded.

1) Decode the DST tree structure;
2) Traverse the tree, define canonic order of nodes, and

retrieve corresponding prefixes pi1 , . . . , pim ;
3) Decode suffixes si1 , . . . , sim , and form complete de-

coded words: wij = pij sij , j = 1, . . . ,m.
We conclude our presentation by showing a complete DST-

based code constructed for our example set of words (see
Table 1, and Figures 1–3).

Code({w1, . . . , wm})
= BindCm+1e(Z), si1 , . . . , sim
= BindC9e(381), s1, s2, s6, s8, s7, s4, s3, s5
= 0000101111101, 1011, 111, 01, 0, 10, 010, 0001, 010.

As evident, the length of this code is 13 + 22 = 35 bits,
which is by 40 − 35 = 5 bits shorter than the length of a
straightforward sequential encoding of words in this set.

III. ANALYSIS OF PERFORMANCE

Let us now assume that input words {w1, . . . , wm} are
produced by a general (not necessarily symmetric) binary
memoryless source, emitting “0”s and “1”s with probabilities
p and q = 1 − p correspondingly. We assume that source
parameter p is known. We further assume that all words are
of length n, and that the total length of words in our set is

t = |w1 . . . wm| = mn . (5)

If we apply a conventional code, such as Shannon or
arithmetic code for a sequence of words w1, . . . , wm, then
the average length of such code will satisfy:

L̄sequence(t) = H t+O(1), (6)

where
H = −p log2 p− q log2 q, (7)

is the entropy of the source [1].
We next estimate average length of our DST-based code.

Theorem 1. The average length of DST-based code for a
set of m binary words of length n, in a memoryless model
satisfies (with m,n → ∞, n/ log2 m > − log−1

2 max(p, q)):

L̄set(t) = H t− log2 m! + (A− δ1(m)) m+O (logm) (8)

where A is a constant, and δ1(m) is a zero-mean, oscillating
function of a small magnitude. When log(p)/ log(q) is irra-
tional, limm→∞ |δ1(m)| = 0. The exact value of A is

A = 2−
γ
ln 2

−
H2

2H
+ α ,

where γ = 0.577 . . . is the Euler constant, H is the entropy
of the source (7), H2 = p log22 p+ q log22 q, and

α = −
∞
∑

k=1

pk+1 log2 p+ qk+1 log2 q
1− pk+1 − qk+1 .

Proof: We start by observing that condition n/log2 m >
− log−1

2 max(p, q) implies that the height (longest path) of
DST constructed over m randomly generated input words is
shorter than n [13]. This ensures that words in our set will be
uniquely parsed by the tree.

Our code consists of 2 parts: (1) encoded DST structure,
occupying at most LDST = dlog2 Cm+1e 6 log2 Cm+1 + 1
bits, and (2) encoded sequence of suffixes. We assume that
Shannon code [1] is used to encode suffixes, producing at most
Lsuff(Sm) 6 H Sm + 1 bits, where Sm is the total length of
all suffixes, and H is the entropy of the source. Consequently,
the expected code length becomes ELsuff(Sm) 6 H S̄m + 1,
where S̄m = ESm, is the expected length of suffixes in our
set. In turn, S̄m can be expressed as S̄m = t − P̄m, where
P̄m = EPm is the expected path length in the DST tree.

We next retrieve result for the expected path length in
DST [10]–[12]:

P̄m =
m
H

[

log2 m+
γ − 1
ln 2

+
H2

2H
− α+ δ1(m)

]

+O(logm) ,

which introduces quantities H , H2, γ, α and δ1(n) appearing
in the text of the theorem.

The rest becomes a matter of simple algebra:

L̄set = LDST +ELsuff(Sm)
6 log2 Cm+1 +H S̄m + 2
= log2 Cm +H

(

t− P̄m
)

+ 2

where by plugging expressions for P̄m and Cm and subsequent
simplifications we arrive at the expression claimed by the
theorem.

By comparing average length of our code (8) with length of
conventional code (6), we immediately notice about log2 m!
difference. The contribution of the following O(m) term
becomes relatively small as both n and m increase.

IV. UNIVERSAL CODES FOR SETS OF CODES

We now offer a modification of our scheme, allowing encod-
ing of sets of words from unknown sources. As a component
tool, we will use J. Ziv and A. Lempel’s LZ1 code [19].

The proposed universal code for a set of m words
{w1, . . . , wm}, is constructed as follows:

1) Build, encode, and transmit DST structure over the input
set {w1, . . . , wm};

2) Start LZ1 encoder, using our DST structure as initial
dictionary;

3) Traverse the DST, and define a canonic order of nodes
i1, . . . , im and the corresponding prefixes pi1 , . . . , pim
stored in the DST;

4) Use LZ1 encoder to progressively encode and transmit
all suffixes of words according to above defined order.

From the analysis of Lempel-Ziv algorithm (cf. [17], [19]),
we know that the average length of LZ1 code for a sequence
of words w1, . . . , wm in memoryless model satisfies:

L̄LZ1
sequence(t) = H t+H

[

B+δ2(t)
] t
log2 t

+O
(

t
log log t
log2 t

)

, (9)

where t = mn is the total input length, H is the entropy of
the source, and B is a constant

B =
2− γ
ln 2

−
H2

2H
+ α,

where component quantities H2, γ and α match ones described
in Theorem 1, and δ2(t) is another zero-mean fluctuating
function of small magnitude.

We now estimate average length of the proposed DST-based
universal code for sets of words.

Theorem 2. The average length of universal DST-based code
for a set of m binary words of length n, in a memoryless model
satisfies (with m,n → ∞, n/ log2 m > − log−1

2 max(p, q)):

L̄LZ1
set (t) > H t− log2 m! +m

[

2−
2

ln 2
+ δ3(m)

]

(10)

+H
[

B + δ2(t)
] t
log2 t

+O
(

t
log log t
log2 t

)

where δ2(t) and δ3(m) are zero-mean, oscillating functions of
small magnitude.

Proof: We first observe that DST structure for our set
of input words {w1, . . . , wm} can always be converted into
a sequence of prefixes p1, . . . , pm. If LZ1 encoder is used to
encode this sequence, it will construct a prefix tree, matching
exactly the structure of the DST. The means, that by im-
plementing a particular partition and reordering of our input
words in a sequence we can produce LZ1 encoding that
will coincide with ours after processing of first Pm symbols.
Hence, in memoryless model, the length of our DST-based
code can be expressed as:

L̄LZ1
set (t) = LDST(m) + L̄LZ1

sequence (t)−EL̄LZ1
sequence (Pm)

where LDST is the length of encoded DST structure, and
EL̄LZ1

sequence (Pm) is the expected length of LZ1 codes con-
structed for a sequence of prefixes stored in DST.

We now observe that L̄LZ1
sequence (t) is a ”mostly” concave

function of t. It becomes concave if we disregard small
fluctuating function δ2(t) in the O

(

t
log t

)

term and subse-
quent terms. By following this argument, and using Jensen’s
inequality we can conjecture that:

EL̄LZ1
sequence (Pm) 6 L̄LZ1

sequence

(

P̄m
)

+O
(

P̄m

log P̄m

)

where P̄m = EPm is the expected length of a all prefixes
in the DST, and where O

(

P̄m
log P̄m

)

captures the magnitude of
contribution of oscillating terms. More precise derivation is
possible by applying analysis techniques used in [17], [18].

By combining (IV) and (IV) together, plugging in expres-
sions for Pm and L̄LZ1

sequence, and some simple algebra, we
arrive at expression claimed by the theorem.

Again, by comparing estimated length of our code (10)
with the length of LZ1 code (9), we notice about log2 m!
difference. The contribution of the following O(m) term
becomes relatively small as both n and m increase.

In passing, we must note that the use of LZ1 code offers
just one possible way of achieving universality for codes for
sets. It is simple, but it may not be the best. For example, for a
class of memoryless sources, the use of Krichevsky-Trofimov
codes [32] is known to be more efficient. Their use should
reduce the O

(

t
log t

)

redundancy term in (10) to just O (log t).

V. CONCLUSIONS

A simple construction procedure for design of codes for
unordered sets of words is offered. The performance of pro-
posed codes is analyzed, and it is shown that in the memoryless
model such codes offer close to logm! (where m is the number
of words) rate savings compared to sequential encoding of
same words. It is shown that such codes can be designed for
both known and unknown sources.

REFERENCES

[1] T. M. Cover and J. M. Thomas, Elements of Information Theory, John
Wiley & Sons, New York, 1991.

[2] D. Knuth, The Art of Computer Programming. Fundamental Algorithms.
Vol. 1, Addison-Wesley, Reading MA, 1968.

[3] D. Knuth, The Art of Computer Programming. Sorting and Searching.
Vol. 3, Addison-Wesley, Reading MA, 1973.

[4] R. Sedgewick, Algorithms. Parts 1-4. Fundamentals, Data Structures,
Sorting, Searching, Addison-Wesley, Reading MA, 1998.

[5] A. Lempel, On multiset decipherable codes, IEEE Trans. Inf. Theory vol.
32, no. 5, pp. 714–716, 1986.

[6] S. A. Savari, Compression of words over a partially commutative alpha-
bet, IEEE Trans. Inf. Theory, vol. 50, no. 7, pp. 1425–1441, 2004.

[7] L. R. Varshney and V. K. Goyal, Toward a Source Coding Theory for
Sets, Proc. Data Compression Conference, Snowbird, Utah, March 2006,
pp. 13–22.

[8] Y. A. Reznik, Coding of Sets of Words, Proc. Data Compression
Conference, Snowbird, Utah, April 2011, pp. 43–52.

[9] E. G. Coffman, Jr. and J. Eve, File structures using hashing functions,
Communications of the ACM, vol. 13, no. 7, pp. 427–436, 1970.

[10] P. Flajolet and R. Sedgewick, Digital Search Trees Revisited, SIAM J.
Computing, vol. 15, pp. 748–767, 1986.

[11] P. Kirschenhofer and H. Prodinger, Some further results on digital
search trees, Lecture Notes in Computer Science, vol. 229, pp. 177–185,
Springer-Verlag, New York, 1986.

[12] W. Szpankowski, A characterization of digital search trees from the
successful search viepoint, Theoretical Computer Science, vol. 85, pp.
117–134, 1991.

[13] B. Pittel, Asymptotic growth of a class of random trees, Annals of
Probability, vol. 18, pp. 414–427, 1985.

[14] A. Andersson and S. Nilsson, Improved Behaviour of Tries by Adaptive
Branching, Information Processing Letters, vol. 46, pp. 295–300, 1993.

[15] Y. A. Reznik, Some Results on Tries with Adaptive Branching, Theo-
retical Computer Science, vol. 289, no. 2, pp. 1009–1026, 2002.

[16] Y. A. Reznik, On the Average Depth of Asymmetric LC-tries, Informa-
tion Processing Letters, vol. 96, no. 3, pp. 106–113, 2005.

[17] G. Louchard and W. Szpankowski, On the Average Redundancy Rate
of the Lempel-Ziv Code, IEEE Trans. Information Theory, vol. 43, pp.
2–8, 1997.

[18] Y. A. Reznik and W. Szpankowski, On the Average Redundancy Rate of
the Lempel- Ziv Code with the K-Error Protocol, Information Sciences,
vol. 135, pp.57–70, 2001.

[19] J. Ziv and A. Lempel, Compression of Individual Sequences via
Variable-Rate Coding, IEEE Trans. Information Theory, vol. 24, pp. 550–
536, 1978.

[20] B. P. Tunstall, Synthesis of Noiseless Compression Codes, Ph.D. disser-
tation, Georgia Inst. Tech., Atlanta, GA, 1967.

[21] G. L. Khodak, Redundancy Estimates for Word-Based Encoding of
Messages Produced by Bernoulli Sources, Probl. Inform. Trans., vol. 8,
no. 2, pp. 21–32, 1972. (in Russian)

[22] M. Drmota, Y. A. Reznik, S. A. Savari, and W. Szpankowski, Precise
Asymptotic Analysis of the Tunstall Code, Proc. IEEE Intl. Symp. Inf.
Theory (ISIT06), Seattle, USA, 2006, pp. 2334 – 2337.

[23] F. Williams, Y. Shtarkov, T. Tjalkens, The Context-Tree Weighting
Method: Basic Properties, IEEE Trans. Inform. Theory, vol. 41, n. 3,
pp. 653–664, 1995.

[24] S. Zaks, Lexicographic Generation of Ordered Trees, Theoretical Com-
puter Science, vol. 10, 1980, pp. 63–82.

[25] J. Katajanen and E. Makinen, Tree compression and optimization with
applications, International Journal of Foundations of Computer Science,
vol. 1, no. 4, 1990, pp. 425–447.

[26] E. Makinen, A survey of binary tree codings, The Computer Journal,
vol. 34, no. 5, 1991, pp. 438–443.

[27] B. Ryabko, Fast enumeration of combinatorial objects, Discrete
Math.and Applications, vol. 10, no. 2, pp. 163–182, 1998.

[28] D. Lewis, Naive (Bayes) at Forty: The Independence Assumtion in
Information Retrieval, Proc. 10th European Conference on Machine
Learning (ECML-98), 1998, pp. 4-15.

[29] T. Gagie, Compressing Probability Distributions, Information Processing
Letters, vol. 97, no. 4, pp. 133–137, 2006.

[30] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, J. Singh, and B. Girod,
Tree histogram coding for mobile image matching, in Proc. IEEE Data
Compression Conference, Snowbird, Utah, March 2009, pp. 143-153.

[31] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, Y. Reznik, R.
Grzeszczuk, and B. Girod, Compressed Histogram of Gradients: a Low-
bitrate Descriptor, International Journal of Computer Vision, vol. 94, pp.
1-16, 2011.

[32] R. E. Krichevsky and V. K. Trofimov, The Performance of Universal
Encoding, IEEE Trans. Information Theory, 27 (1981) 199–207.

