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■■ Improvements in client technologies such as Media 
Source Extensions11 and Encrypted Media Exten-
sions,12 making it possible to use web browsers as 
streaming clients.

Despite all these improvements, standards, and con-
solidation, modern-day OTT media delivery systems are 
still facing fragmentation when it comes to streaming cli-

ent devices and their support for codecs, 
formats, and DRMs.

For example, it is well known 
that most existing devices can 
decode H.264/AVC streams, includ-
ing streams encoded using H.264 
Main and High profiles. Some newer 
devices, most notably Apple devices 
with iOS 11 or later, can also decode 
HEVC.4 However, many older devices, 
including Android devices with ver-
sions prior to 6.0, most likely can only 
play streams encoded using the H.264 
Baseline profile.3

Likewise, it is not a secret that one 
has to use HLS streaming to reach 
Apple devices, whereas the Motion 
Picture Experts Group (MPEG)-
DASH is preferred for Androids and 
Smart TVs. Moreover, one still needs 
to use Smooth streaming13 to reach 

some older TVs and game consoles, and has to resort 
to using progressive downloads to reach legacy mobiles 
(Blackberries, feature phones, etc.). The support for dif-
ferent types of DRMs across different devices is also frag-
mented, as illustrated in Fig. 1.

Known methods of handling fragmented support for 
different codecs and formats include:14

■■ The creation of separate copies of streams, packaged 
specif ically to different delivery formats (HLS, 
DASH, Smooth, etc.) and DRMs (PlayReady, Fair-
Play, Widevine, etc.)
■■ Dynamic transmuxing and dynamic encryption of 

streams, encoded and stored in some intermediate 
formats to match the requirement of final delivery 
formats and DRMs
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implemented using the current cloud com-
puting and content delivery network plat-
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end-to-end performance, delivering the best 
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transcoding, bandwidth, and storage costs.
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Introduction

 O 
 � ver the past two decades, over-
the-top (OTT) streaming, 
used for the delivery of media 
content, has evolved from a 

pioneering concept to a mainstream 
technology. Important steps in this 
evolution included:

■■ The invention of adaptive bitrate (ABR) streaming.1,2

■■ The emergence of content delivery networks (CDNs) 
and HyperText Transfer Protocol (HTTP)-based 
streaming models.
■■ The emergence of suitable standards for codecs, file 

formats, and delivery systems [e.g., H.264/Advanced 
Video Coding (AVC),3 High-Efficiency Video Coding 
(HEVC),4 HTTP live streaming (HLS),5 Dynamic 
Adaptive Streaming over HTTP (DASH),6 and com-
mon media application format (CMAF)7].
■■ Consolidation of Digital Rights Management systems 

(DRMs) to fewer recognized systems (e.g., FairPlay,8 
PlayReady,9 and Widevine10) that are broadly supported.

Despite many 
improvements, 
standards, and 
consolidation, 
modern-day OTT 
media delivery 
systems are still 
facing fragmentation 
when it comes to 
streaming client 
devices and their 
support for codecs, 
formats, and DRMs. 
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■■ The creation of separate encoding profiles (and ABR 
stacks of streams) using each codec (e.g., H.264, 
HEVC, and H.264 baseline).
■■ The creation of mixed encoding profiles, where low-

bitrate streams, targeted to legacy devices, are 
encoded using the H.264 baseline profile, whereas 
higher bitrate streams are encoded using the H.264 
Main and High profiles.

Most of these methods, however, have certain limi-
tations or disadvantages, causing the delivery system 
to be more expensive to operate and/or be suboptimal 
in terms of quality. For example, the creation of many 
versions of encoded streams for different codecs, pro-
tocols, and DRMs dramatically increases transcoding, 
storage, and CDN costs. It also affects the efficiency of 
the CDNs, as their edge cache space is limited, and the 

FIGURE 1.  Support of DRMs across different devices.
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use of multiple copies of the same content will inevitably 
increase the cache miss probability. The use of dynamic 
(or just-in-time) transmuxing and encryption could, 
in principle, minimize storage, transcoding, and CDN 
costs. However, they require the implementation of a 
whole set of additional system elements. This includes 
dynamic device detection, dynamic generation of mani-
fests, and dynamic delivery of final streams over CDNs, 
and the means for doing all these operations at the scale 
and sufficiently close to the edge to achieve practically 
acceptable delays.

Similarly, the use of separate encoding profiles for dif-
ferent codecs or codec profiles/level combinations seems 
wasteful. It may create more streams than are really 
needed for efficient delivery. The use of mixed encoding 
profiles sounds like a better idea, but its use is compli-
cated by the fact that some players may not be able to 
switch between different codecs (e.g., H.264/AVC and 
HEVC streams).

In addition, depending on the operator or the region, 
the population of streaming client devices and their play-
back capabilities may be very different. For example, 
there could be a different split between PCs and mobiles, 
Apple versus Android platforms, average age of the 
devices, their connection speeds, and so on. Hence, ide-
ally, encoding profiles and delivery optimizations should 
be customized, accounting for the context of each opera-
tor or region.

Finally, what also makes video encoding and delivery 
challenging is that the video content, by itself, is highly 
variable. For example, high-action/sports content may 
require more bits to reach the acceptable quality level 
than videos with little or occasional motion (e.g., inter-
views, documentaries, and soap operas). This makes 
the use of “static” (preconfigured for all content) ABR 
encoding profiles suboptimal. To address this issue, in 
recent years, several techniques have been proposed 

based on the concept of dynamic generation of encod-
ing profiles for each content item. These include the 
so-called per-title,15 content-aware,16 and context-aware17–19 
encoding techniques. However, in most cases, such tech-
niques have been developed to work only with a single 
codec (e.g., H.264 or HEVC). See the recent article19 
for an exception to this. The use of multiple codecs and 
specifics of fragmentation of their support have not yet 
been incorporated in the problem definition addressed 
by these techniques.

Summarizing all of the above, we note that although 
many effective techniques, standards, and guidelines for 
building mass-scale multiscreen delivery systems have 
already been developed, there are still many areas where 
additional improvements could be made. Such areas 
include improvements in the overall delivery system 
architecture design, coupling and joint optimization of 
different modules (e.g., device detection, transmuxing, 
dynamic manifest generation, and encoding profile gen-
eration), and end-to-end system performance optimiza-
tions. The objective of this article is to offer some results 
on the above-mentioned topics.

This article is organized as follows. In the following 
section, we will describe a multiscreen delivery system 
architecture, highlighting commonly known and some 
unique elements, and the reasoning behind them. We 
then focus on explaining tools developed for end-to-
end optimizations. We next present examples of system 
statistics and explain performance gains that have been 
achieved. The last section offers concluding remarks.

Architecture of Cloud-Based Multiscreen Video 
Delivery System

System Overview
In Fig. 2, we present the high-level architecture of the 
proposed cloud-based video delivery system. It consists 

FIGURE 2.  High-level architecture of cloud based video delivery system.
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of several functional blocks and where all exchanges, as 
common in cloud-based systems, are done by means of 
RESTful Application Programming Interfaces (APIs).

For example, an operator can use an API to instruct the 
system to ingest the content, transcode it, and then deliver 
it using a CDN or several CDNs, based on their choice. 

The transcoding of the content is done in two steps. 
The first step is responsible for the generation of ABR 
encoding profiles, followed by the traditional transcod-
ing process and producing a set of transcoded streams 
(or renditions). The resulting streams, along with addi-
tional metadata, are then placed on the storage used by 
the dynamic delivery system. We note that such steams 
are not yet encrypted or packaged into the final delivery 
formats (e.g., HLS or DASH segments). Instead, they 
are stored in an intermediate format, thereby allowing 
fast transmuxing operations.

The dynamic delivery system is essentially a layer per-
forming selective transmuxing, encryption, and transfer 
of data to CDNs used for caching and delivery. It is also 
responsible for manifest generation. This module is imple-
mented as a highly distributed system that allows such 
operations to be performed sufficiently close to the players.

The analytics engine is a system that collects infor-
mation from players as well as CDNs for the purpose 
of system performance analysis and end-to-end system 
optimizations.

In the following subsections, we describe the opera-
tions of the elements of this system during the video 
delivery process.

Playback Initiation
When the dynamic delivery system receives a playback 
request for a particular media content, it generates a 
list of manifest URLs, representing all possible com-
binations of supported delivery protocols, formats, and 
DRMs. This list of URLs is subsequently presented to 
a player. If the player recognizes any of the formats in 
this list, it then tries to load the corresponding manifest 
based on the URL provided. This brings control to the 
manifest CDN, which is used to implement the device 
detection and manifest generation functions.

Device Detection
The objective of device detection is to identify the type, 
capabilities, and location of a playback device. For such 
purposes, the device detector uses user–agent, and 
the other fields in HTTP headers present at the time 
manifest is requested. The list of properties that device 
detection is trying to establish is shown in Table 1.

Manifest Generation and Rules Engine
The primary function of dynamic manifest generation 
is to match the features and streams specified in the 
manifest to the capabilities of the receiving device. For 
example, for a device that can only decode H.264 base-
line, only such renditions will be retained. On the other 
hand, if the device can support HEVC, H.264, and 

DASH, and can also switch across adaptation sets and 
codecs, then the output can be an Media Presentation 
Description (MPD) with both the H.264 and HEVC 
adaptation sets and supplemental properties declaring 
the adaptation sets as switchable.

The other function of the manifest generator is to 
apply certain additional rules defined by the operators. 
For example, based on the geo location and certain other 
parameters, an operator may decide to use a different 
CDN or limit the maximum resolution, bitrate, etc. The 
corresponding blocks providing for such functionality in 
Fig. 2 are the rules API and rules engine.

Just-in-Time Packaging
When the manifest is finally received by the player, it starts 
retrieving media segments from the CDN. Such media seg-
ments again may or may not be present in the CDN cache. 
In case of cache misses, the CDN response brings the con-
trol back to the dynamic delivery system and its just-in-time 
packager. In turn, the just-in-time packager retrieves the 
corresponding segments of the content, transmuxes them 
to the required format [e.g., MPEG-2 transport stream 
(TS)20 or ISO Base Media File Format (ISOBMFF)],21 
and passes them back to CDN for delivery.

In other words, the segments in all permutations of 
formats and DRMs are never generated or stored in a 
permanent way on the cloud storage. Instead, this system 
stores only single copies of the content in an intermedi-
ate format. This significantly reduces the cloud storage, 
bandwidth, and operation costs.

Cascaded CDN Architecture
To reduce the frequency at which just-in-time packag-
ers are invoked, the delivery system uses the second-
layer CDN architecture. The first-layer CDN, which 
interfaces with the packagers, is used for initial caching 

TABLE 1. Properties that device detection 
seeks to establish.
Property Possible values

Device type PC, smartphone, tablet, TV, etc.

OS type/version Android 6.0, iOS 11, etc.

Browser type/version Chrome 51, Mozilla 5.0, etc.

Geographic region of 

device

Country code

Video codec support H.264 baseline, H.264, HEVC, 

etc.

Supports codec switching Yes/No

Maximum supported 

resolution

1080p, 540p, 480p, etc.

Maximum supported 

bitrate

1.2 Mbits/s, 4 Mbits/s, 

10 Mbits/s, etc.

Formats and DRM 

support

HLS v4, PlayReady, etc.

HDR video support Yes/No
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and propagation of the content to different regions. 
The second-layer CDNs are then added in each region 
according to the operator’s preferences and provide 
edge caching as needed for delivery to end users.

Based on the above description, the proposed archi-
tecture is designed specifically to minimize transcoding, 
transmuxing, storage, and CDN delivery costs while 
supporting the plurality of existing codecs, formats, and 
DRMs as needed for multiscreen delivery.

Measuring and Tuning Overall System 
Performance

Bandwidth and Usage Statistics
The collection of bandwidth, usage, and other relevant 
statistics in the system, shown in Fig. 2, is done by 
the analytics engine. It collects information from two 
sources: players and CDNs. Players’ data are needed to 
understand which content segments have been played as 
well as to measure buffering and start-up latencies. CDN 
statistics show which segments have been delivered to 
the device and at which speed. By pooling such data, 
the analytics engine is able to collect variety of statistics, 
including information about usage and bandwidth dis-
tributions related to different categories of client devices.

Examples of bandwidth distributions, as measured for 
three different OTT operators, are shown in Figs. 3–5. 
The associated device usage and average bandwidth sta-
tistics are shown in Tables 2–4.

The information provided in the aforementioned 
tables and figures suggests that bandwidth and usage 
statistics in these three cases are very different. Opera-
tor 1 streams predominantly to mobiles, and its effective 
average bandwidth across all devices is only 3.3 Mbits/s. 
Operator 2 has a mixed distribution to PCs, mobiles, 
tablets, and TV screens. Its effective average bandwidth 
across all devices is about 16.393 Mbits/s. Operator 3 
streams only to TVs, and the effective average bandwidth 
in this case is much higher—around 35.77 Mbits/s.

Playback Statistics
The analytics engine module also collects and reports a 
variety of statistics related to the Quality of Experience 
(QOE) delivered by the system. Examples of such sta-
tistics collected from the aforementioned operators are 
presented in Tables 5–7. In all cases, the statistics were 
collected for the streaming of the same test content, 
encoded using nine renditions as prescribed by the stan-
dard HLS ladder for the H.264 codec.22 This ladder is 
shown in Table 8. 

The first nine rows in Tables 5–7 list the estimated 
load probabilities of each rendition. This is followed 
by the QOE parameters, such as buffering probability, 
start-up latency (in seconds), average bandwidth (in 
Kbits/s), average delivered resolution (in frame heights), 
and the average encoding quality [expressed in Struc-
tural Similarity Index Metric (SSIM)23], as delivered by 
a combination of streams pulled by streaming clients. 
The reported SSIM values were initially computed dur-
ing the encoding stage, and then retrieved and aggre-
gated into the final average value based on the rendition 

FIGURE 4.  Bandwidth histograms measured for operator 2.
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load statistics. Such statistics are provided separately for 
each category of devices, as well as in a combined form, 
averaged across all devices (last column).

As easily noticed, despite the fact that content in all 
delivery scenarios is encoded identically, the QOE deliv-
ered by these three operators is very different. Opera-
tor 3 pulls mostly top bitrate 1080p rendition (with a 
probability of about 0.83), delivering about 1003 lines 
of resolution on average and encoding quality of about 
0.971 SSIM. In the case of operator 2, the probability 
of loading of top-most rendition drops to about 0.62 
considering all devices, and just about 0.43 for mobiles. 
This results in lower average resolutions (about 938 lines 
across all devices and only 867 lines for mobiles), as well 
as lower average encoding quality, as the ladder shown 
in Table 8 progressively drops the encoding quality for 
lower resolutions. Finally, in the case of operator 1, the 
situation is even worse. Renditions 3 and 5–7 become 
the most commonly used, resulting in an average deliv-
ered resolution of about 631 lines (628 for mobiles) and 
an encoding quality of about 0.966 SSIM. 

Means for Tuning the System
The system depicted in Fig. 2 includes several tools and 
means by which it can be adjusted or tuned to achieve 
the best performance, given each operator’s context 
and needs. 

The analytics engine, as described above, provides a 
relevant set of performance statistics. Such statistics can 
be localized to regions, jobs, content, delivery devices, 
CDNs, etc. They help the operators to monitor the health 
and efficiency of the system.

The use of rules API and rules engine allows operators 
to select local CDNs and distribute traffic between them 

dynamically without disrupting operations. It also allows 
operators to impose limits and effectively add or remove 
certain streams that can be delivered. The addition of 
streams, especially the low-bitrate ones, may be consid-
ered as a means for reducing the buffering probability 
or load times. On the other hand, the removal of certain 
streams may be considered for reducing the bandwidth 
usage or for improving the CDN cache performance. 

Finally, the system shown in Fig. 2 also allows encoding 
profile generation for each new content item to be gener-
ated dynamically. Such generation accounts for the char-
acteristics of the content, as well as bandwidth-, usage-, 
and playback-statistics collected for each operator. Such 
profile generation and encoding process is called Context-
Aware Encoding (CAE). This step effectively closes the 
feedback loop provided by the analytics engine and allows 
better encoding of new content, accounting for the current 
context (delivery and playback statistics) of each operator. 

Context-Aware Profile Generation
When the CAE profile generator is activated, it analyzes 
the content first, trying to model the space of quality-
rate operating points achievable for a given codec and 
the content. This is followed by an optimization pro-
cess, which selects a set of rates, resolutions, and other 
parameters for ABR encoding profiles, trying to achieve 
a sufficient level of quality while minimizing band-
width, storage, compute, and other resources required 
for delivery. 

Importantly, in such an optimization process, the 
quality estimates for each possible resolution and bitrate 
come from the content analysis, and the estimates of 
stream load probabilities at each rate come from the 
network bandwidth statistics provided by the analytics 
engine. Such network bandwidth statistics are collected 
separately for each type of client device. In computing 
the final optimization cost expression, the CAE genera-
tor aggregates estimates obtained for each device type 
according to the device usage distribution—also provided 
by the analytics module. 

In other words, CAE profile generation performs 
functions of an end-to-end optimization process for mul-
tidevice/multiscreen delivery. The formal mathematical 
description of the underlying optimization problem is 
given by Reznik et al.17 Chen et al.18 extend it to a case of 

TABLE 2. Usage and average bandwidth 
statistics for operator 1.
Device type Usage (%) Average bandwidth 

(Mbits/s)

PC 0.004 7.5654

Mobile 94.321 3.2916

Tablet 5.514 3.8922

TV 0.161 5.4374

All devices 100 3.3283

TABLE 3. Usage and average bandwidth 
statistics for operator 2.
Device type Usage (%) Average bandwidth 

(Mbits/s)

PC 63.49 14.720

Mobile 6.186 10.609

Tablet 9.165 12.055

TV 21.15 24.986

All devices 100 16.393

TABLE 4. Usage and average bandwidth 
statistics for operator 3.
Device type Usage (%) Average bandwidth 

(Mbits/s)

PC 0.0 N/A

Mobile 0.0 N/A

Tablet 0.0 N/A

TV 100 35.7736

All devices 100 35.7736
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designing profiles using multiple codecs and fragmenta-
tion of their support across different devices. 

In passing, we must note that the complexity/cost 
overhead that CAE adds to the overall encoding process 
is rather minor. The most complex step is the content 
analysis step which, complexity-wise, is roughly equiv-
alent to a single-pass encode of the content at a single 
bitrate and resolution. Such an analysis needs to be done 
once for each content item. Considering that next step is 
the generation of multiple (typically  3–9) renditions of 
the same content and that such final renditions are usu-
ally produced by using a much slower two-pass encod-
ing process, the time spent on CAE profile generation is 
bound to be in the range of about 5%–15% of the overall 
time spent on encoding. Moreover, in practice, since the 
use of CAE in most cases results in the reduction of the 

number of renditions in the final ABR profiles, the over-
all encoding and compute costs with CAE are typically 
lower than that without it.

Examples of Optimizations
In this section, we provide a few examples of optimi-
zations achieved by using the above-described tools. 
Primarily, we will focus on optimizations to operator 
contexts and video content. 

Adaptations to Different Networks and Devices
Let us now consider three operators with bandwidth 
and usage statistics as presented in Figs. 3–5 and 
Tables 2–4, respectively. The same test video sequence 
is used in all cases. CAE encoding profiles generated 
for this sequence, given the statistics from each of the 
operators, are shown in Tables 9–11.

TABLE 5. Playback statistics for operator 1.
Statistics PC Mobile Tablet TV All

Rendition 1 0.00331 0.02046 0.01024 0.00678 0.01987

Rendition 2 0.01732 0.05157 0.03159 0.0207 0.05042

Rendition 3 0.01738 0.1402 0.09481 0.06734 0.13757

Rendition 4 0.05788 0.06888 0.05975 0.0676 0.06837

Rendition 5 0.09267 0.18057 0.18157 0.07306 0.18045

Rendition 6 0.14752 0.26691 0.28177 0.24079 0.26769

Rendition 7 0.14315 0.18247 0.19578 0.14113 0.18313

Rendition 8 0.15852 0.06816 0.09574 0.21973 0.06993

Rendition 9 0.36199 0.0161 0.04503 0.16131 0.01794

Buffering 0.00026 0.00468 0.00372 0.00156 0.00463

Start time 2.14374 4.02900 3.46468 2.60737 3.98948

Bandwidth 5131.21 2730.21 3174.90 4218.81 2757.25

Resolution 861.221 628.680 676.972 794.530 631.624

SSIM 0.97030 0.96666 0.96836 0.96879 0.96676

TABLE 6. Playback statistics for operator 2.
Statistics PC Mobile Tablet TV All

Rendition 1 0.00798 0.00573 0.00374 0.00022 0.00452

Rendition 2 0.01475 0.0119 0.00937 0.00093 0.00953

Rendition 3 0.01193 0.01635 0.01805 0.00197 0.01319

Rendition 4 0.06136 0.05944 0.10466 0.01077 0.05341

Rendition 5 0.10589 0.05767 0.13437 0.02598 0.06098

Rendition 6 0.14685 0.07741 0.0953 0.05187 0.07794

Rendition 7 0.10422 0.07573 0.07808 0.05372 0.07306

Rendition 8 0.08825 0.07463 0.08211 0.08126 0.07756

Rendition 9 0.45717 0.61389 0.47271 0.77318 0.62495

Buffering 0.00136 0.00648 0.00141 0.00009 0.00435

Start time 1.94761 1.79835 2.00201 1.60687 1.77841

Bandwidth 3840.61 4159.37 3736.25 4655.01 4206.01

Resolution 963.553 993.104 949.804 1053.253 1000.070

SSIM 0.96267 0.96346 0.96236 0.96500 0.96364
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In all cases, the CAE profile generator was also given 
the same overall constraints that generally match the 
characteristics of the HLS reference-encoding ladder 
(Table 8). This includes constraints on the minimum 
and maximum bitrates, the maximum gap between 
adjacent bitrates, the maximum number of renditions, 
as well as constraints on resolutions, framerates, and 
pixel aspect ratios.

The resulting CAE-generated profiles for opera-
tors 1–3 are presented in Tables 9–11. We observe that 
these profiles are different. For operator 1, CAE gener-
ated seven renditions, with high density of points around 
0–1 Mbit/s range. For operator 2, it also generated seven 
renditions, however, with faster rump toward higher 
resolutions and bitrates. Note, specifically, that instead 
of selecting 540p resolution at the fourth rendition, it 
selects 576p. Finally, in the case of operator 3, CAE gen-
erated only five renditions, which are even more sparsely 

TABLE 7. Playback statistics for operator 3.
Statistics TV All

Rendition 1 0.00066 0.00066

Rendition 2 0.00232 0.00232

Rendition 3 0.03165 0.03165

Rendition 4 0.02472 0.02472

Rendition 5 0.04815 0.04815

Rendition 6 0.01428 0.01428

Rendition 7 0.01874 0.01874

Rendition 8 0.02806 0.02806

Rendition 9 0.83091 0.83091

Buffering 0.00051 0.00051

Start time 1.58783 1.58783

Bandwidth 6927.70 6927.70

Resolution 1003.316 1003.316

SSIM 0.97133 0.97133

TABLE 8. Standard HLS encoding ladder22 and SSIM quality levels 
achieved for the content used in the experiment.
Rendition Profile Resolution Framerate Bitrate SSIM

1 High 416 × 234 23.976 145 0.92231

2 High 640 × 360 23.976 365 0.94337

3 High 768 × 432 23.976 730 0.95776

4 High 768 × 432 23.976 1100 0.96788

5 High 960 × 540 23.976 2000 0.97148

6 High 1280 × 720 23.976 3000 0.96931

7 High 1280 × 720 23.976 4500 0.9753

8 High 1920 × 1080 23.976 6000 0.96861

9 High 1920 × 1080 23.976 7800 0.97217

Storage 25640

placed apart. Such use of fewer renditions leads to lower 
transcoding costs and better CDN efficiency.

Besides the changes in the numbers of renditions, we 
also notice significant changes in bitrates in the CAE-
generated profiles relative to the HLS reference profile, 
as shown in Table 8. All CAE-generated profiles require 
significantly lower bandwidth and storage. 

One notable difference between the CAE-generated 
and reference HLS profiles is that CAE uses a mixed set 
of H.264 profiles, starting with Baseline, followed by the 
Main and High profiles. In contrast, the HLS ladder, rec-
ommended in the latest Apple deployment guidelines,22 
uses only the High profile across all renditions. CAE-
generated profiles can therefore reach a much broader 
set of devices, including those that can only decode the 
H.264 baseline. 

Next, in Tables 12–14, we present playback statistics 
as measured for the CAE-encoded content delivered by 
all three operators. As described earlier, the first rows in 
these tables list measured load probabilities for all rendi-
tions, followed by the standard QOE metrics. 

Table 15 presents relative change values, computed 
for average numbers reported across all devices for each 
operator. The negative values mean that the use of CAE 
leads to the reduction in the value of the respective param-
eter by the given percentage. The positive values imply the 
increase in the parameter value due to the use of CAE. 

Based on the information presented in Table 15, it can 
be observed that the use of CAE resulted in significant 
savings of resources in all the three cases. The number of 
renditions and, consequently transcoding and compute 
costs, are reduced by 22.2%–44.4%. The amount of stor-
age is reduced by 56.9%–68.7%, thereby, reducing cloud 
storage costs. Savings in the average bandwidth usage are 
also significant but are more dependent on the opera-
tor’s context. For example, for operators 2 and 3, which 
deliver mostly over high-speed networks, we observe 
bandwidth savings in the range of 31.3% to 33.9%. 
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For operator 1, delivering over slower connections (with 
average bandwidth around 3.3 Mbits/s), the reduction in 
bandwidth usage is more modest—about 8.44%. How-
ever, the average resolution delivered to this operator is 
over 27% higher (804 lines on average versus 631), and 
the average start-up latency also decreases by over 5.7%. 
In other words, the use of CAE optimizations for opera-
tor 1 resulted in an increase of QOE, apart from savings 
in bandwidth, storage, and compute costs.

This comparison shows the benefits that can be 
achieved by optimizing encoding profiles to operator’s 
networks and device usage statistics. 

Adaptations to Different Types of Content 
As discussed earlier, as part of the overall optimization 
process, the CAE profile generator also adapts profiles 
to specific properties of each input content. For exam-
ple, for “easier” to encode content, such as cartoons 

TABLE 9. CAE-generated encoding ladder for operator 1.
Rendition Profile Resolution Framerate Bitrate SSIM

1 Baseline 320 × 180 30 125 0.93369

2 Baseline 480 × 270 30 223.08 0.93793

3 Main 640 × 360 30 398.11 0.94636

4 Main 960 × 540 30 774.78 0.94953

5 Main 1280 × 720 30 1549.5 0.95637

6 High 1600 × 900 30 2765.3 0.96105

7 High 1920 × 1080 30 4935.1 0.96576

Storage 10771

TABLE 10. CAE-generated encoding ladder for operator 2.
Rendition Profile Resolution Framerate Bitrate SSIM

1 Baseline 320 × 180 30 125 0.93338

2 Baseline 480 × 270 30 239.71 0.94122

3 Main 640 × 360 30 469.54 0.95202

4 Main 1024 × 576 30 939.08 0.95221

5 Main 1280 × 720 30 1568.8 0.95658

6 High 1600 × 900 30 2765.3 0.96105

7 High 1920 × 1080 30 4935.1 0.96576

Storage 11026

TABLE 11. CAE-generated encoding ladder for operator 3.
Rendition Profile Resolution Framerate Bitrate SSIM

1 Baseline 320 × 180 30 125 0.93447

2 Baseline 512 × 288 30 307.42 0.94855

3 Main 960 × 540 30 803.59 0.95050

4 Main 1280 × 720 30 1727.8 0.95864

5 High 1920 × 1080 30 5050.7 0.96599

Storage 8014.6

or screen captures, CAE may assign lower bitrates or 
higher resolutions at the same bitrates, whereas for more 
“complex” content, such as high-action sports or mov-
ies, it may assign higher bitrates or lower resolutions at 
the same bitrates.

To estimate the average savings that can be achieved 
for different categories of content, we have performed a 
study using 500 video assets, with a combined duration 
of over 120 hr, and representing 33 different categories, 
such as action movies, sports, documentary, etc.

Such content was encoded using the standard HLS 
profile (Table 8) and by using CAE. Both versions of the 
content were subsequently delivered to the viewers and 
playback statistics have been captured. The same opera-
tor was used in both the tests. 

The results are summarized in Table 16. All numbers 
represent relative changes between respective statistics 
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TABLE 12. Playback statistics for operator 1 after CAE optimization.
Statistics PC Mobile Tablet TV All

Rendition 1 0.00084 0.00678 0.00398 0.00247 0.00662

Rendition 2 0.00359 0.01851 0.00856 0.00593 0.01794

Rendition 3 0.01834 0.07164 0.04614 0.02805 0.07016

Rendition 4 0.04087 0.13809 0.09536 0.08767 0.13564

Rendition 5 0.10114 0.17519 0.17164 0.08743 0.17485

Rendition 6 0.21248 0.37255 0.39131 0.32508 0.3735

Rendition 7 0.62253 0.21339 0.27992 0.46209 0.21747

Buffering 0.00021 0.00385 0.00309 0.00128 0.00382

Start time 2.56661 3.95220 3.49462 2.91179 3.92152

Bandwidth 3857.24 2504.93 2832.92 3399.98 2524.53

Resolution 966.381 801.556 851.838 915.236 804.521

SSIM 0.96266 0.95797 0.95948 0.96119 0.95806

TABLE 13. Playback statistics for operator 2 after CAE optimization.
Statistics PC Mobile Tablet TV All

Rendition 1 0.00248 0.00357 0.00153 0.00008 0.00258

Rendition 2 0.01192 0.00604 0.00513 0.00037 0.00512

Rendition 3 0.01402 0.01654 0.01427 0.00158 0.01301

Rendition 4 0.03352 0.03715 0.05427 0.00538 0.03177

Rendition 5 0.11148 0.07551 0.16928 0.02499 0.07564

Rendition 6 0.20711 0.1134 0.14396 0.07515 0.11391

Rendition 7 0.61811 0.74131 0.61015 0.89236 0.75362

Buffering 0.00136 0.00648 0.00141 0.00009 0.00435

Start time 1.94563 1.79721 2.00044 1.60611 1.77729

Bandwidth 3844.52 4162.01 3739.18 4657.22 4208.66

Resolution 963.553 993.104 949.804 1053.25 1000.07

SSIM 0.96274 0.96352 0.96242 0.96507 0.96370

TABLE 14. Playback statistics for operator 3 
after CAE optimization.
Statistics TV All

Rendition 1 0.00064 0.00064

Rendition 2 0.00555 0.00555

Rendition 3 0.04259 0.04259

Rendition 4 0.0785 0.0785

Rendition 5 0.87229 0.87229

Buffering 0.00043 0.00043

Start time 1.56135 1.56135

Bandwidth 4579.37 4579.37

Resolution 1023.74 1023.74

SSIM 0.96464 0.96464

TABLE 15. Effects of CAE optimization for 
three operators.
Statistic Relative changes (%) for each operator

Operator 1 Operator 2 Operator 3

Renditions −22.222 −22.222 −44.444

Storage −57.991 −56.932 −68.741

Bandwidth −8.4402 −31.307 −33.897

Resolution +27.373 +6.5968 +2.0362

SSIM −0.9003 −0.7447 −0.6895

Buffering −1.7494 −1.0493 −1.5686

Start time −5.7035 −1.0081 −1.6676

obtained for encoding produced using the default HLS 
ladder (Table 8) versus CAE. For compactness of pre-
sentation, only the changes in renditions, storage, band-
width, and resolution are presented. The changes in other 
statistics were minor (<2%).

By looking at the data in Table 16, it can be observed 
that CAE improvements are significant across all cate-
gories of content. We also note that for some categories 
of content, such as “Interviews” or “Golf,” the changes 
in bandwidth are extremely high (we see savings of 
about 74%), whereas for some other categories, such as 
“Swimming” or “Hockey,” such savings are considerably 
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lower (19%–22%). The savings in storage are more con-
sistent across all categories of content. The changes in the 
numbers of renditions are also more consistent across all 
categories of content.

The above study was done using the H.264 encoder 
and HD/8-bit standard dynamic range (SDR) content. In 
our experience, we also noticed that when using the HEVC 
codec, CAE savings are generally similar in magnitude and 
have the same general dependency on the characteristics of 
the content. The relative savings in the cases of 4K content 
are typically higher, as CAE manages to save even more 
renditions and bits relative to typical static ladders.22

Multicodec Profile Optimizations
One of the features of the CAE profile generator is the 
ability to generate ABR profiles for plurality of existing 
codecs. In this case, the generator also uses information 
on the support of such codecs by different categories of 
receiving devices. Such information is supplied as part 
of operator usage and bandwidth statistics, provided by 
the analytics engine.

The use of multicodec profile generation leads to 
additional savings in the total number of renditions, as 
well as quality gains achievable by clients that can switch 

TABLE 16. Average savings as measured for different content categories, operator 2.

Category
Relative changes (%) due to using CAE

Renditions Storage Bandwidth Resolution

Action −35.05 −77.28 −59.16 +3.57

Adventure −29.63 −70.17 −51.33 +3.32

Comedy −25.12 −62.16 −41.28 +2.33

Drama −32.36 −73.29 −55.83 +3.55

Scifi −31.38 −71.89 −53.17 +3.27

Cartoon −30.15 −68.82 −47.71 +2.93

Video game −29.2 −67.76 −46.17 +3.17

Baseball −21.57 −61.09 −50.89 +0.76

Basketball −22.1 −57.82 −34.15 +1.72

Boxing −23.71 −65.33 −43.03 +3.1

Cricket −14.29 −58.12 −50.13 +0.97

Cycling −23.11 −58.92 −36.55 +2.35

Field hockey −22.22 −51.57 −22.66 +1.1

Football −28.57 −79.12 −52.25 +1.69

Golf −28.57 −79.38 −74.2 +1.69

Gymnastics −26.1 −65.45 −44.01 +2.79

Hockey −22.22 −51.26 −20.39 +0.08

Mixed sports −23.63 −55.47 −29.22 +1.35

Racing −28.57 −74.68 −66.96 +1.5

Running −23.3 −56.66 −31.99 +2.52

Squash −27.56 −67.18 −47.11 +3.22

Swimming −22.22 −50.04 −19.67 +0.17

Tennis −18.72 −61.04 −51.44 +1.07

Weightlifting −31.44 −72.6 −51.66 +3.78

Documentary −25.72 −59.85 −34.19 +2.19

Game show −28.16 −65.18 −40.95 +3.02

Interview −37.33 −81.17 −74.2 +1.6

Kids channel −24.75 −59.52 −34.04 +1.69

Talk show −36.07 −77.76 −59.02 +3.99

News −25.97 −62.36 −39.64 +2.24

Reality TV −24.94 −58.51 −33.52 +2.46

Sitcom −31.49 −71.93 −54.04 +3.23

Soap opera −34.92 −76.61 −58.83 +3.8

Overall −28.42 −65.64 −43.76 +2.65
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between the codecs. To illustrate this, let us consider a 
mixed H.264+HEVC ladder presented in Fig. 6.

The green and red curves in the figure show shapes 
of quality-rate functions achievable by the HEVC and 
H.264 codecs, respectively. The points along these 
curves represent characteristics of renditions included 
in the encoding profile. The orange “staircase” repre-
sents the set of quality levels that is achievable by the 
H.264-only client as it switches between renditions. 
Similarly, the gray “staircase” represents quality levels 
achievable by the HEVC-only client. The dashed blue 
line “staircase” shows the composition of quality lev-
els achievable by a client that can switch between both 
codecs. By following the shape of this dashed blue stair-
case, it becomes immediately obvious that such a hybrid 
and/or switchable client achieves better performance 
than the other two clients, as it effectively operates with 
a finer grain ladder. 

To enable such improvements, the multicodec CAE 
profile generator solves a rather complex optimization 
problem, where the overall optimization cost func-
tion includes a weighted sum of average quality values 
achievable by H.264-only, HEVC-only, and switch-
able H264/HEVC clients, and where the weights are 
based on the distribution of devices of each kind as 
specific to an operator. The formal definition of this 
problem as well as analysis and more results can be 
found in Ref. 19.

Conclusion
We have described the architecture of a large-scale mul-
tiscreen OTT video delivery system. This system was 
designed for the effective handling of plurality of codecs, 
DRMs, and formats as needed for delivery to a population 
of client devices with different capabilities. We have also 

FIGURE 6.  H.264 and HEVC-encoding ladders and quality levels 
achievable by different types of client devices.

Bitrate[Kbps]
0 500 1000 1500 2000

1.0

0.9

Qh264(R)

Qhevc(R)

Selected by H264 client

Selected by HEVC client

Selected by 2–codec client

0.8

0.7

Q
ua

lit
y[

SS
IM

]
described specific tools and techniques that were added to 
optimize the end-to-end performance of such systems. The 
effectiveness of the proposed techniques has been illus-
trated with system statistics, before and after optimizations.
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