
Performance of Low-Latency HTTP-based Streaming Players

Bo Zhang
 Brightcove, Inc.

 Boston, MA, USA
 bzhang@brightcove.com

Nabajeet Barman
 Brightcove, Inc.

 Boston, MA, USA
 nbarman@brightcove.com

Yuriy Reznik
 Brightcove, Inc.

 Boston, MA, USA
 yreznik@brightcove.com

ABSTRACT
Reducing end-to-end streaming latency is critical to HTTP-based
live video streaming. There are currently two leading technologies
in this domain: Low-Latency HTTP Live Streaming (LL-HLS) and
Low-Latency Dynamic Adaptive Streaming over HTTP (LL-
DASH). Many popular streaming players, including HLS.js,
DASH.js, Video.js, Shaka player, THEO player, and others, now
support these protocols. Furthermore, with some players, there are
now several alternative adaptation algorithms. This paper evaluates
the performance of such low-latency players and their adaptation
methods. The evaluation is based on a series of live streaming
experiments, repeated using identical video content, encoders,
encoding profiles, and network conditions, emulated using traces
of real-world networks. Several system performance metrics, such
as average stream bitrate, the amounts of downloaded data,
streaming latency, and buffering and switching statistics, have been
captured and reported. These results are used to describe the
observed differences in the performance of low-latency players and
systems.

KEYWORDS
HTTP Adaptive Streaming, HLS, DASH, Low-Latency Streaming

1 INTRODUCTION
In the past few years, the video streaming industry has seen
immense interest in Low-Latency streaming protocols, targeting
sub-5-second end-to-end delay, comparable to the delay in live
broadcast TV systems. Such low delay is critical for streaming live
sports, gaming, online learning, interactive video applications, etc.

As well known, the delay in the conventional live streaming
technologies such as HLS [1] and DASH [2] is much longer. It is
caused by relatively long (4-10 seconds) segments and a segment-
based delivery model, requiring complete delivery of each media
segment before playback. Combined with buffering strategies used
by the HLS or DASH streaming clients, this typically produces
delays of 10 to 30sec, or even longer.

Low-Latency HLS (LL-HLS) [3,4] and Low-Latency DASH (LL-
DASH) [2,5,6] are the recent evolutions of the HLS and DASH
standards, designed to reduce the latency. They employ a new
encoding and transmission process, effectively splitting each

segment into several (typically 4-10) chunks and then using such
"chunks" for transmission. Since each "chunk" is significantly
shorter than a segment, this reduces the delay in the streaming
system.

The support for LL-DASH and LL-HLS technologies is already
quite broad, with many available streaming players, encoders, and
packaging tools. The available implementations LL-DASH and
LL-HLS players include Apple's AVPlayer [7], HLS.js [8],
DASH.js [9], Video.js [10], Shaka player [11], and THEO
player [12]. With some players, such as DASH.js and HLS.js there
are also several advanced adaptation algorithms, such as Low on
Latency (LoL) [13], LoL+ [14], and Learn2Adapt-LowLatency
(L2ALL) [15] that may be deployed [16]. The available encoding
and packaging tools include Apple's HLS reference tools [17],
FFmpeg [18], node-gpac-dash [19], and others.

In our prior study [20, 21], we evaluated some of these players
when they introduced the support for LL-HLS and LL-DASH.
In this work, we extend this study to include the latest versions of
all players and the latest available adaptation algorithms [14-16].
Notably, in this work, we also study the performance of the THEO
player [12]. THEO is currently the only player supporting LL-HLS,
LL-DASH, and High-Efficiency Streaming Protocol (HESP) – a
new protocol submitted for consideration in IETF [22]. This
protocol is claimed to have some additional delay advantages over
LL-HLS and LL-DASH [23], although the principles of operation
are very similar.

To evaluate all players, we use a common evaluation framework,
with identical content, the same encoding ladder and codec-specific
constraints to encode it, identical network conditions simulated in
all cases, and consistent set of metrics collected and processed. This
is done to ensure an accurate and fair comparison. In Section 2, we
will describe the details of our evaluation setup. In Section 3, we
will present and discuss the results of our measurements. In Section
4, we will drive conclusions.

2 EXPERIMENT SETUP

2.1 Video encoding and streaming tool-chains
The overall diagrams of the tool-chains that we used for LL-HLS
and LL-DASH streaming are shown in Figures 1 and 2
respectively. To generate LL-HLS streams, we used FFmpeg [18]
and Apple's HLS reference tools [17]. To generate LL-DASH

streams, we used OBS studio [24], FFmpeg [18], and a modified
version of node-gpac-dash [19]. Additional details about our setups
can be found in [25,26]. The LL-HLS stream was served
dynamically by Apple's go-llhls-server [17]. The LL-DASH stream
was served dynamically by node-gpac-dash [19].

As shown in Figures 1 and 2, the input feed(s) were sent to the low-
latency packagers (mediastreamsegmenter [17] for LL-HLS, and
FFmpeg for LL-DASH). The outputs of low-latency packagers are
the chunked video segments and the manifest files describing how
the players can consume the streams in low-latency mode. Next,
the output stream files are served by the low-latency video servers
(go-llhls-server [17] for LL-HLS, node-gpac-dash [19] for LL-
DASH) to players in a chunked manner.

2.2 Content and video encoding parameters
As a test video sequence, we used a 1080p version of the Big Buck
Bunny [27] video. This sequence was looped to generate a
continuous live source stream in MPEG-TS format carried over
UDP transport. Four live transcoded variant streams (from SD up
to full HD resolution) were created, with encoding parameters
listed in Table 1. For all renditions, the video frame rate was 25fps,
the segment length was set to 4 seconds, the low-latency chunk
length was set to 1 second, and the segment container format was
fragmented mp4.

To minimize fluctuations in the encoding bitrates, constant bitrate
(CBR) encoding mode has been utilized. H.264 encoder operating
in the Main profile has been used. Lookahead processing was
disabled to minimize the encoding delays. The segment and
fragment durations were set to 4secs and 1sec, respectively,

matching the default values used in Apple's streaming tools for LL-
HLS [17]. The same encoding parameters have been used to
generate LL-DASH and LL-HLS streams.

The overall session duration that we used to test each player's
performance under each network was 10 minutes. Given selected
chunk and fragment lengths, this has allowed about 600 chunks or
150 segments to be downloaded per session.

2.3 Streaming players
Overall, we have evaluated 10 different configurations of low-
latency streaming players, with parameters listed in Table 2.

For LL-DASH, we used DASH.js [9], Shaka [11], and THEO [12]
players. With DASH.js we used three different low-latency ABR
algorithms: DASH.js default [9], LoL+ algorithm [14], and L2All
algorithm [15]. For DASH.js and Shaka players, we used versions
of the player SDKs downloaded in Oct 2022. For THEO player, we
used their public testing player [12].

For LL-HLS, we used Shaka player [11], the latest HLS.js [8]
version available in Jan 2023, and a 2020 version of HLS.js with
three different low-latency ABR algorithms (Hls.js 2020 default,
Lol+ and L2all) which were re-implemented and integrated in
HLS.js by the University of Klagenfurt [16]. For all players, except
THEO player, we have implemented simple test applications. The
THEO player was already pre-built and hosted by THEO
technologies [12].

2.4 Performance metric collection and processing
We have instrumented the player applications to periodically
collect metrics indicative of live streaming latency, playback speed,
and re-buffering events. We collect all the metrics at a rate of one
second. So, for a 600 seconds streaming session, we had 600 data
points for all the metrics.

Table 1: Encoding profile parameters

Rendition Resolution [pixels] Codec / profile Bitrate
[kbps]

Low 768 x 432 H.264 / Main 949
Mid 1024 x 576 H.264 / Main 1854
High 1600 x 900 H.264 / Main 3624
Top 1920 x 1080 H.264 / Main 5166

Table 2. Streaming players / configurations used

Player (protocol) Player / SDK / access date Adap. method
DASH.js default DASH.js, Oct 2022, [9] default
DASH.js LolP DASH.js, Oct 2022, [9] LoL+ [14]
DASH.js L2all DASH.js, Oct 2022, [9] L2All [15]
Shaka player (dash) Shaka player, Jan 2023, [11] default
THEO player (dash) THEO player, Jan 2023 [12] default
Hls.js default 2020 HLS.js, Oct 2020, [8] default
Hls.js LolP 2020 HLS.js, Oct 2020, [8] LoL+ [14, 16]
Hls.js L2all 2020 HLS.js, Oct 2020, [8] L2All [15, 16]
Hls.js default 2023 HLS.js, Jan 2023, [8] default
Shaka player (hls) Shaka player, Jan 2023, [11] default

Figure 1: Toolchain used for testing LL-DASH players

Figure 2: Toolchain used for testing LL-HLS players

All the player SDK(s) provide API methods for monitoring live
latency. We used these methods to collect latency data in the player
applications. The exception is the THEO player, hosted on a
proprietary domain. However, since the hosted player calculates
latency internally in the player application, we used Chrome's live
expression feature to extract its latency reports and print them to
the developer console every 250ms. Playback speed data was
collected using the built-in API method in the HTML5 video
element [28]. HTML5 video element also provides methods for
monitoring player buffer length, so we use player buffer length to
detect playback stalls and re-buffering events. Specifically, stream
re-buffering events are detected by tracking the player buffer length
every second. When the player's buffer length drops below 0.3
seconds at time t0, the player reports one re-buffering event
(playback stall). After time t0, we count the number of seconds
when the player's buffer length remains below 0.3 seconds until it
buffers more than 0.3 seconds at time t1. This indicates one re-
buffering event of T = t1 - t0 seconds. For the entire 600 seconds
session, we count the total number of re-buffering events and the
total number of seconds when the player buffers less than 0.3
seconds.

Other metrics, such as stream bitrate, video resolution, and media
data downloaded, were derived from the streaming servers' access
logs. Specifically, we instrumented both LL-HLS and LL-DASH

servers to report (every second) the most recent rendition that the
player requested. The processing of all collected metrics was done
offline. Table 3 provides the complete list of metrics collected in
our test system. The re-buffering ratio is the buffering time to the
play-time ratio observed during the session.

2.5 Network emulation
We used the Mahimahi network emulator to emulate various
network conditions at the network interface level [29]. Mahimahi
is essentially a Linux container that can run an application inside.
An application inside Mahimahi connects to the outside world
through a virtual network interface that sends and receives bytes
according to the running downlink and uplink traces. This way, the
capacity of the network interface is limited by the running trace.
When we run the test players inside Mahimahi, the player
download speed is limited by the capacity of the virtual interface.
Unlike bandwidth throttling features in web browsers, Mahimahi
provides more faithful network emulation by using real-world
traces and throttling bandwidth at the network interface level.
Additionally, the same network traces are replayed for all the test
sessions. Such a methodology allows a fair comparison of different
players.

We have evaluated the test players using two 4G-LTE network
traces from T-Mobile and Verizon networks, respectively [29].
We provide the visualizations of these traces and the related
statistics in Figure 3 and Table 4.

3 THE RESULTS

3.1 The results for T-Mobile LTE network
The performance metrics collected using T-Mobile LTE network
are shown in Table 5. Figures 4 and 5 illustrate the variations of
player-selected bitrates, Figures 6 and 7 illustrate the changes in
playback latency, and Figures 8 and 9 illustrate changes in playback
speeds as observed during test sessions.

As can be observed, in terms of network bandwidth consumption
the highest numbers are achieved by THEO player. It also has
shown the best buffering performance among LL-DASH players,
and had 0 playback speed variation. However, in terms of latency,
THEO player was almost 2x behind DASH.js [9], operating with a
6.16sec delay vs. 3.06 sec for the latter. Among HLS players, we
note that HLS.js, using its new (2023) default adaptation algorithm,
has achieved the highest average bitrate. But it also operated at a
longer latency of 8.93 sec. HLS.js showed the best latency among
HLS-based players with the LOL+ algorithm [14,16]. HLS.js with
L2ALL [14,16] was the second best in this dimension. We also note
that the Shaka player has shown reasonably solid and consistent
behavior with LL-HLS and LL-DASH streams. Shaka and THEO
players were also the only players maintaining the constant
playback speed.

Table 3. Performance metrics collected

Metrics [units] Dimensions
Streaming bitrate [kbps] Efficiency, QoE
Video resolution [height] QoE
Live latency [secs] Latency, QoE
Variation of playback speed [x 1 speed] QoE
The number of bitrate switches QoE
The number of rebuffering events QoE
Rebuffering ratio [%] QoE
Downloaded media data [Mbytes] and
media objects [chunks or segments]

Efficiency

Table 4: Network bandwidth statistics

Statistics T-Mobile LTE Verizon LTE
Avg. Bandwidth [kbps] 12258 10565
St. dev of bitrate [kbps] 9314 8619
Min. bandwidth [kbps] 12 12
Max. bandwidth [kbps] 59460 42804

Figure 3. Network traces used for the experiments.

3.2 The results for the Verizon LTE network
The performance metrics collected using the T-Mobile LTE
network are shown in Table 5. Figures 10 and 11 illustrate the

variations of player-selected bitrates, Figures 12 and 13 illustrate
the changes in playback latency, and Figures 14 and 15 show
changes in playback speeds as observed during test sessions

Table 5: Performance statistics – T-Mobile LTE network

Player/Algorithm Avg. bitrate
[kbps]

Avg. height
[pixels]

Avg. latency
[secs]

Latency
var. [secs]

Speed
var. [%]

Number
of switches

Buffer
events

Buffer
ratio [%]

MBs
loaded

Objects
loaded

DASH.js default 2770 726 3.06 0.21 10.4 93 38 7.99 352.2 256
DASH.js LolP 3496 853 5.65 4.59 22.7 70 53 21.96 369.4 210
DASH.js L2all 3699 908 4.14 3.18 19.9 5 19 7.99 368 147
Shaka player (dash) 3818 916 4.92 2.06 0 16 5 4.66 360.3 155
THEO player (dash) 4594 993 6.16 0.01 0 27 0 0 418.7 152
HLS.js default 2020 1763 562 10.08 10.91 8.1 26 2 9.8 130.7 589
HLS.js LolP 2020 1756 560 5.97 0.2 6.1 24 0 0 148.1 688
HLS.js L2all 2020 1752 560 6 0.23 5.9 34 0 0 133.1 686
HLS.js default 2023 3971 895 8.93 1.13 0 8 0 0 360.8 613
Shaka player (hls) 3955 908 7.18 2.23 0 14 7 3.8 230 475

Figure 4. Stream bitrate – DASH – T-Mobile LTE Figure 5. Stream bitrate – HLS – T-Mobile LTE

Figure 6. Live latency – DASH – T-Mobile LTE Figure 7. Live latency – HLS – T-Mobile LTE.

Figure 8. Playback speed – DASH – T-Mobile LTE Figure 9. Playback speed – HLS – T-Mobile LTE.

Compared to the T-Mobile network study, we note that the Verizon
network is considerably more challenging, resulting in higher

buffering and longer delay statistics. We also notice that under such
difficult conditions, some players switch operations from low-

Table 6: Performance statistics – Verizon LTE network

Player/Algorithm Avg. bitrate
[kbps]

Avg. height
[pixels]

Avg. latency
[secs]

Latency
var. [secs]

Speed
var. [%]

Number
of switches

Buffer
events

Buffer
ratio [%]

MBs
loaded

Objects
loaded

DASH.js default 2131 627 3.79 3.16 14.9 91 23 7.99 260 207
DASH.js LolP 3368 829 7.29 6.8 23.9 106 51 21.96 351 221
DASH.js L2all 3672 905 6.47 5.36 23.3 7 7 7.99 338 135
Shaka player (dash) 3653 886 6.96 7.08 0 26 5 4.66 329 148
THEO player (dash) 4153 909 18.19 10.08 0 33 2 0 383 153
HLS.js default 2020 2085 610 11.66 10.25 11.4 28 3 9.8 140 606
HLS.js LolP 2020 1890 580 7.86 2.63 7.0 24 2 0 146 569
HLS.js L2all 2020 1803 567 8.84 4.43 10.7 26 2 0 145 547
HLS.js default 2023 3541 822 16.78 9.13 0 9 5 0 280 598
Shaka player (hls) 3669 860 7.98 2.41 0 22 9 3.8 260 570

Figure 10. Stream bitrate – DASH – Verizon LTE Figure 11. Stream bitrate – HLS – Verizon LTE

Figure 12. Live latency – DASH –Verizon LTE Figure 13. Live latency – HLS – Verizon LTE.

Figure 14. Playback speed – DASH – Verizon LTE Figure 15. Playback speed – HLS – Verizon LTE.

delay to standard (20-30sec delay) regime. We observe this
behavior with the THEO player for LL-DASH and with the Shaka
player for LL-HLS. But many of our earlier observations remain
the same. E.g., THEO player still manages to pull most data and
buffer less, DASH.js operates with the shortest delay, Shaka
delivers similar performance for both LL-HLS and LL-DASH, etc.
In both cases, we also note that LL-HLS players produce many
more object load requests than LL-DASH players.

6 Conclusions
This study evaluated ten recent implementations of LL-HLS and
LL-DASH streaming players, operating under identical network
conditions and with consistently encoded and packaged content.

Our experiments confirmed that LL-HLS and LL-DASH could
deliver significantly lower latencies than traditional HLS and
DASH streaming systems. With LL-DASH players, we have
observed that streaming is possible with delays as short as 3-4 sec,
while with LL-HLS streams, we noted that delays of 6-8 sec could
be attainable.

However, we have also noticed that achieving such short delays
typically comes with compromises in QOE, efficiency factors, or
both. The parameters that are usually affected are:

• stream switching and buffering rates,
• the ability of players to select high renditions,
• the ability of players to sustain constant playback speed,
• the ability of players to sustain low delay,
• the rate of requests sent to CDNs and origin servers,
• the amount of data transmitted, etc.

The performed comparison shows how different existing player
implementations achieve different tradeoffs along all these
dimensions. And while we note considerable progress in improving
such player algorithms since the introduction of LL-HLS and LL-
DASH around 2016-2019, we believe that additional performance
improvements are still possible and much needed for the success of
these technologies in practice.

REFERENCES
[1] IETF RFC 8216, "HTTP Live Streaming", https://tools.ietf.org/html/rfc8216,

 2017.
[2] ISO/IEC 23009-1:2012, "Information technology - Dynamic adaptive streaming

over HTTP (DASH) - Part 1: Media presentation description and segment
formats," February 2012.

[3] IETF RFC 8216, HTTP Live Streaming, 2nd Edition,
https://tools.ietf.org/html/draft-pantos-hls-rfc8216bis-08, 2019.

[4] Apple, Enabling Low-Latency HLS,
https://developer.apple.com/documentation/http_live_streaming/enabling_low-
latency_hls

[5] ETSI technical specification, "MPEG-DASH Profile for Transport of ISO-
BMFF Based DVB Services over IP Based Networks", May 2015,
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.01.01_60/ts_103
285v010101p.pdf

[6] DASH Industry Forum, "Low-Latency Modes for DASH",
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf

[7] AVFoundation, https://developer.apple.com/av-foundation/
[8] Hls.js player, https://github.com/video-dev/hls.js/
[9] DASH.js player, https://github.com/Dash-Industry-Forum/DASH.js
[10] Video.js player https://videojs.com/

[11] Shaka player, https://github.com/google/shaka-player
[12] THEO player, https://www.THEOplayer.com/test-your-stream-hls-dash-hesp
[13] M. Lim, M. N. Akcay, A. Bentalab, A. C. Begen, R. Zimmermann, "When they

go high, we go low: low-latency live streaming in DASH.js with LoL," ACM
Multimedia Systems Conference, Online, June 8-11, 2020.

[14] A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, and R. Zimmermann,
"Catching the Moment with LoL+ in Twitch-Like Low-Latency Live Streaming
Platforms," IEEE Trans. Multimedia, vol. 24, pp. 2300-2314, 2022.

[15] T. Karagkioules, R. Mekuria, D. Griffioen, A. Wagenaar, "Online Learning for
Low-Latency Adaptive Streaming," ACM Multimedia Systems Conference,
Online, June 8-11, 2020.

[16] A. Bentaleb, Z. Zhan, F. Tashtarian, M. Lim, S. Harous, C. Timmerer,
H. Hellwagner, and R. Zimmermann, “Low Latency Live Streaming
Implementation in DASH and HLS,” ACM Int. Conference Multimedia, Lisbon,
Portugal, October 10-14, 2022

[17] HLS tools,
https://developer.apple.com/documentation/http_live_streaming/about_apple_s_
http_live_streaming_tools

[18] FFmpeg, https://www.ffmpeg.org/
[19] DASH Low Latency Server, https://github.com/maxutility2011/node-gpac-dash
[20] B. Zhang, T. Teixeira, Y. Reznik, "Performance of Low-Latency HTTP-based

Streaming Players," Proc. ACM Multimedia Systems Conference (MMSys'21),
Istanbul, Turkey, Sept. 28 - Oct. 1, 2021.

[21] B. Zhang, T. Teixeira, and Y. Reznik, "Performance of Low-Latency DASH and
HLS Streaming in Mobile Networks," SMPTE Motion Imaging Journal, vol.
131, no. 7, 2022.

[22] HESP, IETF draft proposal: https://datatracker.ietf.org/doc/draft-THEO-hesp/
[23] HESP Alliance web page: https://www.hespalliance.org/
[24] Open Broadcast Software, https://obsproject.com/
[25] B. Zhang, Setting up your Own Low-Latency HLS Server to Stream from any

Source Inputs, https://bozhang-26963.medium.com/setting-up-your-lowlatency-
hls-server-to-stream-from-any-source-inputs-de1e757a6688

[26] B. Zhang, Low-Latency DASH Streaming Using Open-Source Tools,
https://bozhang-26963.medium.com/low-latency-dash-streaming-using-
opensource-tools-f93142ece69d

[27] Blender Foundation, Big Buck Bunny video, https://download.blender.org/
[28] W3C, HTML5 video element, https://www.w3.org/TR/2011/WD-html5-

20110113/video.html
[29] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, H.

Balakrishnan, "Mahimahi: accurate record-and-replay for HTTP," in Proc.
USENIX Annual Technical Conference (USENIX ATC '15), Santa Clara, CA,
July 8-10, 2015.

https://tools.ietf.org/html/rfc8216
https://tools.ietf.org/html/draft-pantos-hls-rfc8216bis-08
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_hls
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_hls
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.01.01_60/ts_103285v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.01.01_60/ts_103285v010101p.pdf
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf
https://developer.apple.com/av-foundation/
https://github.com/video-dev/hls.js/
https://github.com/Dash-Industry-Forum/dash.js
https://videojs.com/
https://github.com/google/shaka-player
https://www.theoplayer.com/test-your-stream-hls-dash-hesp
https://developer.apple.com/documentation/http_live_streaming/about_apple_s_http_live_streaming_tools
https://developer.apple.com/documentation/http_live_streaming/about_apple_s_http_live_streaming_tools
https://www.ffmpeg.org/
https://github.com/maxutility2011/node-gpac-dash
https://datatracker.ietf.org/doc/draft-theo-hesp/
https://www.hespalliance.org/
https://obsproject.com/
https://bozhang-26963.medium.com/setting-up-your-lowlatency-hls-server-to-stream-from-any-source-inputs-de1e757a6688
https://bozhang-26963.medium.com/setting-up-your-lowlatency-hls-server-to-stream-from-any-source-inputs-de1e757a6688
https://bozhang-26963.medium.com/low-latency-dash-streaming-using-opensource-tools-f93142ece69d
https://bozhang-26963.medium.com/low-latency-dash-streaming-using-opensource-tools-f93142ece69d
https://download.blender.org/
https://www.w3.org/TR/2011/WD-html5-20110113/video.html
https://www.w3.org/TR/2011/WD-html5-20110113/video.html

