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ABSTRACT 
Reducing end-to-end streaming latency is critical to HTTP-based 
live video streaming. There are currently two leading technologies 
in this domain: Low-Latency HTTP Live Streaming (LL-HLS) and 
Low-Latency Dynamic Adaptive Streaming over HTTP (LL-
DASH). Many popular streaming players, including HLS.js, 
DASH.js, Video.js, Shaka player, THEO player, and others, now 
support these protocols. Furthermore, with some players, there are 
now several alternative adaptation algorithms. This paper evaluates 
the performance of such low-latency players and their adaptation 
methods. The evaluation is based on a series of live streaming 
experiments, repeated using identical video content, encoders, 
encoding profiles, and network conditions, emulated using traces 
of real-world networks. Several system performance metrics, such 
as average stream bitrate, the amounts of downloaded data, 
streaming latency, and buffering and switching statistics, have been 
captured and reported. These results are used to describe the 
observed differences in the performance of low-latency players and 
systems. 
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1  INTRODUCTION 
In the past few years, the video streaming industry has seen 
immense interest in Low-Latency streaming protocols, targeting 
sub-5-second end-to-end delay, comparable to the delay in live 
broadcast TV systems. Such low delay is critical for streaming live 
sports, gaming, online learning, interactive video applications, etc.  

As well known, the delay in the conventional live streaming 
technologies such as HLS [1] and DASH [2] is much longer. It is 
caused by relatively long (4-10 seconds) segments and a segment-
based delivery model, requiring complete delivery of each media 
segment before playback. Combined with buffering strategies used 
by the HLS or DASH streaming clients, this typically produces 
delays of 10 to 30sec, or even longer. 

Low-Latency HLS (LL-HLS) [3,4] and Low-Latency DASH (LL-
DASH) [2,5,6] are the recent evolutions of the HLS and DASH 
standards, designed to reduce the latency. They employ a new 
encoding and transmission process, effectively splitting each 

segment into several (typically 4-10) chunks and then using such 
"chunks" for transmission. Since each "chunk" is significantly 
shorter than a segment, this reduces the delay in the streaming 
system.  

The support for LL-DASH and LL-HLS technologies is already 
quite broad, with many available streaming players, encoders, and 
packaging tools. The available implementations LL-DASH and 
LL-HLS players include Apple's AVPlayer [7], HLS.js [8], 
DASH.js [9], Video.js [10], Shaka player [11], and THEO 
player [12]. With some players, such as DASH.js and HLS.js there 
are also several advanced adaptation algorithms, such as Low on 
Latency (LoL) [13], LoL+ [14], and Learn2Adapt-LowLatency 
(L2ALL) [15] that may be deployed [16]. The available encoding 
and packaging tools include Apple's HLS reference tools [17], 
FFmpeg [18], node-gpac-dash [19], and others.  

In our prior study [20, 21], we evaluated some of these players 
when they introduced the support for LL-HLS and LL-DASH. 
In this work, we extend this study to include the latest versions of 
all players and the latest available adaptation algorithms [14-16]. 
Notably, in this work, we also study the performance of the THEO 
player [12]. THEO is currently the only player supporting LL-HLS, 
LL-DASH, and High-Efficiency Streaming Protocol (HESP) – a 
new protocol submitted for consideration in IETF [22]. This 
protocol is claimed to have some additional delay advantages over 
LL-HLS and LL-DASH [23], although the principles of operation 
are very similar.   

To evaluate all players, we use a common evaluation framework, 
with identical content, the same encoding ladder and codec-specific 
constraints to encode it, identical network conditions simulated in 
all cases, and consistent set of metrics collected and processed. This 
is done to ensure an accurate and fair comparison. In Section 2, we 
will describe the details of our evaluation setup. In Section 3, we 
will present and discuss the results of our measurements. In Section 
4, we will drive conclusions. 

2  EXPERIMENT SETUP 

2.1 Video encoding and streaming tool-chains 
The overall diagrams of the tool-chains that we used for LL-HLS 
and LL-DASH streaming are shown in Figures 1 and 2 
respectively. To generate LL-HLS streams, we used FFmpeg [18] 
and Apple's HLS reference tools [17]. To generate LL-DASH 



 
 

streams, we used OBS studio [24], FFmpeg [18], and a modified 
version of node-gpac-dash [19]. Additional details about our setups 
can be found in [25,26]. The LL-HLS stream was served 
dynamically by Apple's go-llhls-server [17]. The LL-DASH stream 
was served dynamically by node-gpac-dash [19].  

As shown in Figures 1 and 2, the input feed(s) were sent to the low-
latency packagers (mediastreamsegmenter [17] for LL-HLS, and 
FFmpeg for LL-DASH). The outputs of low-latency packagers are 
the chunked video segments and the manifest files describing how 
the players can consume the streams in low-latency mode. Next, 
the output stream files are served by the low-latency video servers 
(go-llhls-server [17] for LL-HLS, node-gpac-dash [19] for LL-
DASH) to players in a chunked manner. 

2.2 Content and video encoding parameters 
As a test video sequence, we used a 1080p version of the Big Buck 
Bunny [27] video. This sequence was looped to generate a 
continuous live source stream in MPEG-TS format carried over 
UDP transport. Four live transcoded variant streams (from SD up 
to full HD resolution) were created, with encoding parameters 
listed in Table 1. For all renditions, the video frame rate was 25fps, 
the segment length was set to 4 seconds, the low-latency chunk 
length was set to 1 second, and the segment container format was 
fragmented mp4. 

To minimize fluctuations in the encoding bitrates, constant bitrate 
(CBR) encoding mode has been utilized. H.264 encoder operating 
in the Main profile has been used. Lookahead processing was 
disabled to minimize the encoding delays. The segment and 
fragment durations were set to 4secs and 1sec, respectively, 

matching the default values used in Apple's streaming tools for LL-
HLS [17]. The same encoding parameters have been used to 
generate LL-DASH and LL-HLS streams. 

The overall session duration that we used to test each player's 
performance under each network was 10 minutes. Given selected 
chunk and fragment lengths, this has allowed about 600 chunks or 
150 segments to be downloaded per session. 

2.3 Streaming players 
Overall, we have evaluated 10 different configurations of low-
latency streaming players, with parameters listed in Table 2.  

For LL-DASH, we used DASH.js [9], Shaka [11], and THEO [12] 
players. With DASH.js we used three different low-latency ABR 
algorithms: DASH.js default [9], LoL+ algorithm [14], and L2All 
algorithm [15]. For DASH.js and Shaka players, we used versions 
of the player SDKs downloaded in Oct 2022. For THEO player, we 
used their public testing player [12].  

For LL-HLS, we used Shaka player [11], the latest HLS.js [8] 
version available in Jan 2023, and a 2020 version of HLS.js with 
three different low-latency ABR algorithms (Hls.js 2020 default, 
Lol+ and L2all) which were re-implemented and integrated in 
HLS.js by the University of Klagenfurt [16]. For all players, except 
THEO player, we have implemented simple test applications. The 
THEO player was already pre-built and hosted by THEO 
technologies [12].  

2.4 Performance metric collection and processing 
We have instrumented the player applications to periodically 
collect metrics indicative of live streaming latency, playback speed, 
and re-buffering events. We collect all the metrics at a rate of one 
second. So, for a 600 seconds streaming session, we had 600 data 
points for all the metrics.  

Table 1: Encoding profile parameters 

Rendition Resolution [pixels] Codec / profile Bitrate 
[kbps] 

Low 768 x 432 H.264 / Main 949 
Mid 1024 x 576 H.264 / Main 1854 
High 1600 x 900 H.264 / Main 3624 
Top 1920 x 1080 H.264 / Main 5166 

 

Table 2. Streaming players / configurations used 

Player (protocol) Player / SDK / access date Adap. method 
DASH.js default DASH.js, Oct 2022, [9] default 
DASH.js LolP DASH.js, Oct 2022, [9] LoL+ [14] 
DASH.js L2all DASH.js, Oct 2022, [9] L2All [15] 
Shaka player (dash) Shaka player, Jan 2023, [11] default 
THEO player (dash) THEO player, Jan 2023 [12] default 
Hls.js default 2020 HLS.js, Oct 2020, [8] default 
Hls.js LolP 2020 HLS.js, Oct 2020, [8] LoL+ [14, 16] 
Hls.js L2all 2020 HLS.js, Oct 2020, [8] L2All [15, 16] 
Hls.js default 2023 HLS.js, Jan 2023, [8] default 
Shaka player (hls) Shaka player, Jan 2023, [11] default 

 

    
Figure 1: Toolchain used for testing LL-DASH players 

 
Figure 2: Toolchain used for testing LL-HLS players 

 



 

All the player SDK(s) provide API methods for monitoring live 
latency. We used these methods to collect latency data in the player 
applications. The exception is the THEO player, hosted on a 
proprietary domain. However, since the hosted player calculates 
latency internally in the player application, we used Chrome's live 
expression feature to extract its latency reports and print them to 
the developer console every 250ms. Playback speed data was 
collected using the built-in API method in the HTML5 video 
element [28]. HTML5 video element also provides methods for 
monitoring player buffer length, so we use player buffer length to 
detect playback stalls and re-buffering events. Specifically, stream 
re-buffering events are detected by tracking the player buffer length 
every second. When the player's buffer length drops below 0.3 
seconds at time t0, the player reports one re-buffering event 
(playback stall). After time t0, we count the number of seconds 
when the player's buffer length remains below 0.3 seconds until it 
buffers more than 0.3 seconds at time t1. This indicates one re-
buffering event of T = t1 - t0 seconds. For the entire 600 seconds 
session, we count the total number of re-buffering events and the 
total number of seconds when the player buffers less than 0.3 
seconds.  

Other metrics, such as stream bitrate, video resolution, and media 
data downloaded, were derived from the streaming servers' access 
logs. Specifically, we instrumented both LL-HLS and LL-DASH 

servers to report (every second) the most recent rendition that the 
player requested. The processing of all collected metrics was done 
offline. Table 3 provides the complete list of metrics collected in 
our test system. The re-buffering ratio is the buffering time to the 
play-time ratio observed during the session.  

2.5 Network emulation 
We used the Mahimahi network emulator to emulate various 
network conditions at the network interface level [29]. Mahimahi 
is essentially a Linux container that can run an application inside. 
An application inside Mahimahi connects to the outside world 
through a virtual network interface that sends and receives bytes 
according to the running downlink and uplink traces. This way, the 
capacity of the network interface is limited by the running trace. 
When we run the test players inside Mahimahi, the player 
download speed is limited by the capacity of the virtual interface. 
Unlike bandwidth throttling features in web browsers, Mahimahi 
provides more faithful network emulation by using real-world 
traces and throttling bandwidth at the network interface level. 
Additionally, the same network traces are replayed for all the test 
sessions. Such a methodology allows a fair comparison of different 
players.  

We have evaluated the test players using two 4G-LTE network 
traces from T-Mobile and Verizon networks, respectively [29]. 
We provide the visualizations of these traces and the related 
statistics in Figure 3 and Table 4. 

3 THE RESULTS 

3.1 The results for T-Mobile LTE network 
The performance metrics collected using T-Mobile LTE network 
are shown in Table 5. Figures 4 and 5 illustrate the variations of 
player-selected bitrates, Figures 6 and 7 illustrate the changes in 
playback latency, and Figures 8 and 9 illustrate changes in playback 
speeds as observed during test sessions.   

As can be observed, in terms of network bandwidth consumption 
the highest numbers are achieved by THEO player. It also has 
shown the best buffering performance among LL-DASH players, 
and had 0 playback speed variation. However, in terms of latency, 
THEO player was almost 2x behind DASH.js [9], operating with a 
6.16sec delay vs. 3.06 sec for the latter. Among HLS players, we 
note that HLS.js, using its new (2023) default adaptation algorithm, 
has achieved the highest average bitrate. But it also operated at a 
longer latency of 8.93 sec. HLS.js showed the best latency among 
HLS-based players with the LOL+ algorithm [14,16]. HLS.js with 
L2ALL [14,16] was the second best in this dimension. We also note 
that the Shaka player has shown reasonably solid and consistent 
behavior with LL-HLS and LL-DASH streams. Shaka and THEO 
players were also the only players maintaining the constant 
playback speed.  

Table 3. Performance metrics collected 

Metrics [units] Dimensions 
Streaming bitrate [kbps] Efficiency, QoE 
Video resolution [height]  QoE 
Live latency [secs] Latency, QoE 
Variation of playback speed [x 1 speed] QoE 
The number of bitrate switches  QoE 
The number of rebuffering events QoE 
Rebuffering ratio [%] QoE 
Downloaded media data [Mbytes] and 
media objects [chunks or segments] 

Efficiency 

 

Table 4: Network bandwidth statistics 

Statistics T-Mobile LTE  Verizon LTE  
Avg. Bandwidth [kbps] 12258 10565 
St. dev of bitrate [kbps] 9314 8619 
Min. bandwidth [kbps] 12 12 
Max. bandwidth [kbps] 59460 42804 

 

 
Figure 3. Network traces used for the experiments. 



 
 

3.2  The results for the Verizon LTE network 
The performance metrics collected using the T-Mobile LTE 
network are shown in Table 5. Figures 10 and 11 illustrate the 

variations of player-selected bitrates, Figures 12 and 13 illustrate 
the changes in playback latency, and Figures 14 and 15 show 
changes in playback speeds as observed during test sessions 

Table 5: Performance statistics – T-Mobile LTE network 

Player/Algorithm Avg. bitrate 
[kbps] 

Avg. height 
[pixels] 

Avg. latency 
[secs] 

Latency 
var. [secs] 

Speed 
var. [%] 

Number 
of switches 

Buffer 
events 

Buffer 
ratio [%] 

MBs 
loaded 

Objects 
loaded 

DASH.js default 2770 726 3.06 0.21 10.4 93 38 7.99 352.2 256 
DASH.js LolP 3496 853 5.65 4.59 22.7 70 53 21.96 369.4 210 
DASH.js L2all 3699 908 4.14 3.18 19.9 5 19 7.99 368 147 
Shaka player (dash) 3818 916 4.92 2.06 0 16 5 4.66 360.3 155 
THEO player (dash) 4594 993 6.16 0.01 0 27 0 0 418.7 152 
HLS.js default 2020 1763 562 10.08 10.91 8.1 26 2 9.8 130.7 589 
HLS.js LolP 2020 1756 560 5.97 0.2 6.1 24 0 0 148.1 688 
HLS.js L2all 2020 1752 560 6 0.23 5.9 34 0 0 133.1 686 
HLS.js default 2023 3971 895 8.93 1.13 0 8 0 0 360.8 613 
Shaka player (hls) 3955 908 7.18 2.23 0 14 7 3.8 230 475 

 

  
Figure 4. Stream bitrate – DASH – T-Mobile LTE                Figure 5. Stream bitrate – HLS – T-Mobile LTE 

   
Figure 6. Live latency – DASH – T-Mobile LTE Figure 7. Live latency – HLS – T-Mobile LTE. 

  
Figure 8. Playback speed – DASH – T-Mobile LTE Figure 9. Playback speed – HLS – T-Mobile LTE.  



 

Compared to the T-Mobile network study, we note that the Verizon 
network is considerably more challenging, resulting in higher 

buffering and longer delay statistics. We also notice that under such 
difficult conditions, some players switch operations from low-

Table 6: Performance statistics – Verizon LTE network 

Player/Algorithm Avg. bitrate 
[kbps] 

Avg. height 
[pixels] 

Avg. latency 
[secs] 

Latency 
var. [secs] 

Speed 
var. [%] 

Number 
of switches 

Buffer 
events 

Buffer 
ratio [%] 

MBs 
loaded 

Objects 
loaded 

DASH.js default 2131 627 3.79 3.16 14.9 91 23 7.99 260 207 
DASH.js LolP 3368 829 7.29 6.8 23.9 106 51 21.96 351 221 
DASH.js L2all 3672 905 6.47 5.36 23.3 7 7 7.99 338 135 
Shaka player (dash) 3653 886 6.96 7.08 0 26 5 4.66 329 148 
THEO player (dash) 4153 909 18.19 10.08 0 33 2 0 383 153 
HLS.js default 2020 2085 610 11.66 10.25 11.4 28 3 9.8 140 606 
HLS.js LolP 2020 1890 580 7.86 2.63 7.0 24 2 0 146 569 
HLS.js L2all 2020 1803 567 8.84 4.43 10.7 26 2 0 145 547 
HLS.js default 2023 3541 822 16.78 9.13 0 9 5 0 280 598 
Shaka player (hls) 3669 860 7.98 2.41 0 22 9 3.8 260 570 

 

  
Figure 10. Stream bitrate – DASH – Verizon LTE                Figure 11. Stream bitrate – HLS – Verizon LTE 

   
Figure 12. Live latency – DASH –Verizon LTE Figure 13. Live latency – HLS – Verizon LTE.  
 

  
Figure 14. Playback speed – DASH – Verizon LTE Figure 15. Playback speed – HLS – Verizon LTE.  



 
 

delay to standard (20-30sec delay) regime. We observe this 
behavior with the THEO player for LL-DASH and with the Shaka 
player for LL-HLS. But many of our earlier observations remain 
the same. E.g., THEO player still manages to pull most data and 
buffer less, DASH.js operates with the shortest delay, Shaka 
delivers similar performance for both LL-HLS and LL-DASH, etc. 
In both cases, we also note that LL-HLS players produce many 
more object load requests than LL-DASH players.  

6  Conclusions 
This study evaluated ten recent implementations of LL-HLS and 
LL-DASH streaming players, operating under identical network 
conditions and with consistently encoded and packaged content.  

Our experiments confirmed that LL-HLS and LL-DASH could 
deliver significantly lower latencies than traditional HLS and 
DASH streaming systems. With LL-DASH players, we have 
observed that streaming is possible with delays as short as 3-4 sec, 
while with LL-HLS streams, we noted that delays of 6-8 sec could 
be attainable.  
 
However, we have also noticed that achieving such short delays 
typically comes with compromises in QOE, efficiency factors, or 
both. The parameters that are usually affected are:  

• stream switching and buffering rates, 
• the ability of players to select high renditions, 
• the ability of players to sustain constant playback speed,  
• the ability of players to sustain low delay,  
• the rate of requests sent to CDNs and origin servers,  
• the amount of data transmitted, etc. 

The performed comparison shows how different existing player 
implementations achieve different tradeoffs along all these 
dimensions. And while we note considerable progress in improving 
such player algorithms since the introduction of LL-HLS and LL-
DASH around 2016-2019, we believe that additional performance 
improvements are still possible and much needed for the success of 
these technologies in practice.  
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