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ABSTRACT 
As well known, when the input video is upscaled, the effectiveness 
of its transcoding and delivery may suffer. The encoded stream may 
not look sharp and use more bits than necessary. Then with adaptive 
streaming, extra streams may be added to reach such a maximum 
resolution and bitrate. The result is a significant waste of storage, 
bandwidth, and compute resources. In this paper, we explain the 
origins of this problem, survey existing methods for addressing it, 
and then propose our solution. Our proposed design incorporates a 
novel "true resolution" detection technique and a traditional CAE 
(context-aware encoding) encoding ladder generator. The CAE 
generator receives the detected "true resolution" of content as a 
limit for resolutions to include in the ladder. Such a limit enables 
all subsequent savings. We describe the details of our proposed 
resolution detection method, bring examples explaining how it 
works, and then study the performance of our proposed system in 
practice. Our study, performed using 500 video assets representing 
120 hours of real-world production material, confirms the 
effectiveness of this technique. It shows that in many practical 
cases, the incoming content is, in fact, upscaled and that adding a 
"true resolution" detector to CAE brings very appreciable savings 
in bandwidth, storage, and compute costs. 
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1  INTRODUCTION 
In the modern world, we are witnessing continued evolution and 
increasingly hybrid operation of traditional/broadcast and 
OTT/streaming systems. Such co-existence often leads to complex 
distribution flows with many video transcoding and format 
conversion operations [1].  

For example, consider a hybrid broadcast + OTT distribution 
system presented in Figure 1. As typical for broadcast systems, the 
incoming video feeds originate from remote and field production. 
A contribution encoder is employed at this stage. It converts video 
from camera-native format to one required on ingest by the 
broadcast system. Then, once the content reaches the master 
control/playout system, it undergoes additional transformations. 

The playout system may add channel bugs, lower thirds, ad avails, 
etc. It may also mix content from different sources. Then, another 
encoder is employed to transmit streams from the broadcast system 
to an OTT delivery workflow. And then, within the OTT delivery 
system, another encoder produces outputs for DASH/HLS 
streaming distribution [2,3]. As easily observed, there are several 
transcoding operations involved.  

Each transcoding or editing operation may introduce changes in 
video formats. Furthermore, in some cases, such conversions may 
lower the effective "spatial density" of the content. Examples 
include video upscaling, SAR/DAR conversions, removal of black 
bars, etc. Conversions between interlaced and progressive formats 
may also involve upscaling, as with SD to HD format conversions. 
Table 1 lists several commonly used video formats, along with 
typical examples of conversion operations increasing the "declared 
resolutions" of the mezzanines. 

1.1 Problems presented by upscaled content 
When the final OTT/streaming transcoder receives the mezzanine 
content, it is generally unaware of any earlier conversion operations 
performed. It only sees the resolution and DAR or SAR as declared 
in the mezzanine metadata. Hence, if input content is upscaled, it 
becomes transcoded for delivery as is, producing outputs that may 
be suboptimal from a quality and efficiency standpoint. 

For example, if a 1080p asset becomes up-converted to 4K earlier 
in the workflow, it most likely will be transcoded as 4K content for 
delivery. Furthermore, with HLS/DASH streaming requirements, 
this will result in a ladder of 9-12 streams with intermediate 
resolutions to 4K. Such ABR encoding may easily double or even 
triple bandwidth and storage costs. But quality-wise, if this was a 
1080p stream initially, it won't look much better. The same 
experience can be delivered by a more compact 1080p ladder using 
much fewer bits.  

The described problem, unfortunately, is quite common in modern 
practice. As shown in Table 1, there are many standard format 
conversion operations producing upscaled outputs. With 
increasingly more complex media delivery workflows and 
additional encoding and format conversion operations introduced 
in practical systems, this problem becomes even more significant. 



 
 

1.2 Prior work 
Among related prior work, we must recognize several categories of 
techniques that may be helpful.  

The first category comprises "per-title," "content-aware," and 
"context-aware" encoding (CAE) techniques [5-10]. Such 
techniques first analyze each incoming video asset and then decide 
how many bits to use to encode it most efficiently. In other words, 
instead of using a fixed ladder, as shown in Table 2, they generate 
a custom ladder for each input video. If the video is "simple" to 
encode, it receives fewer bits. If the video is "complex," more bits 
and possibly more streams may be generated. In the case of 
upscaled content, it is reasonable to expect at least the top few 
renditions (the ones with the highest resolutions) to become more 
compressible. Hence CAE could save some bits. But it won't trim 
the encoding profile or reduce the maximum resolution 
automatically. In other words, while CAE could lessen the 
inefficiency introduced by upscaling, it can't eliminate it.  

The second category of techniques comprises video encoder-level 
optimizations, dynamically changing resolutions within the 
encoded streams. Such functionality is allowed in the latest codecs, 
such as VVC [11]. With older codecs, such as H.264 [12] and 
HEVC [13] it is also possible with HLS and appropriate support 
from HLS clients and decoders [14]. However, dynamic resolution 
changes are not always safe. For example, they may alter the artistic 
appearance of film grain, background textures, or other fine details. 
Dynamic resolution changes may also introduce an inconsistency 
in video appearance throughout playback. When working with 
previously upscaled content, such techniques could also help, but 
there is no guarantee that the resolutions they select dynamically on 
a segment-to-segment or frame-by-frame basis would match the 
original resolution of the content. They also will not affect the 

 

Figure 1: A hybrid broadcast + OTT video delivery system with multiple transcoding and conversion operations.   

 

 

Table 1: Common formats and up-conversion operations. 

Formats Width Height DAR SAR Up-conversions 

SD/480i 

352 480i 4:3 20:11 

720p, 1080i, 
1080p 

480 480i 4:3 4:3 
528 480i 4:3 40:33 
544* 480i 4:3 40:33 
640 480i 4:3 1:1 
704 480i 4:3 10:11 
720* 480i 4:3 10:11 
352 480i 16:9 80:33 
480 480i 16:9 16:9 
528 480i 16:9 160:99 
544* 480i 16:9 160:99 
640 480i 16:9 4:3 
704 480i 16:9 40:33 
720* 480i 16:9 40:33 

SD/576i 

352 576i 4:3 24:11 
480 576i 4:3 8:5 
544* 576i 4:3 11:12 
704 576i 4:3 12:11 
720* 576i 4:3 12:11 
352 576i 16:9 32:11 
480 576i 16:9 32:15 
544* 576i 16:9 64:33 
704 576i 16:9 16:11 
720* 576i 16:9 16:11 

 960 720p 16:9 4:3 

1080p, 4K 

HD/720p 1280 720p 16:9 1:1 
 1280 1080i 16:9 3:2 

HD/1080i 1440 1080i 16:9 4:3 
1920 1080i 16:9 1:1 

HD/1080p 1920 1080 16:9 1:1 

Widescreen 
1080p, 2K 

1920 800p 2.4:1 1:1 

1080p, 4K 
1920 816p 2.35:1 1:1 
2048 858p 2.39:1 1:1 
2048 864p 2.4:1 1:1 
2048 1080p 1.9:1 1:1 

* Formats with horizontal overscan.  



 

number of streams in the ABR encoding ladder. In other words, this 
class of techniques could also help, but only partially.  

Finally, the last category of relevant techniques includes "original 
resolution" or "true resolution" detectors [15-18]. These algorithms 
detect if a given image or video was previously upscaled. Their 
traditional uses include forensic analysis, restoration, and other 
applications [17]. But they come with some limitations. For 
example, the well-known A. C. Gallagher's method [15] only works 
well for cubic interpolation [16]. The normalized energy density 
technique [17] is also limited to classic reconstruction filters. The 
method utilizing the ratio of the low- and high-frequency energy 
densities, proposed in [18], appears to be more general. It bounds 
the range of likely original resolutions. However, it does not 
strongly indicate that a particular sampling frequency is the best 
candidate. The method of detecting a "sharp decline" in the 
accumulated log-amplitude spectrum [19] is also more general. The 
authors in [19] report success in its application to modern super-
resolution upscaling techniques [20-24]. However, as we observed 
in our experiments, none of these methods is perfect. They work in 
many cases but may also fail in some. Many are sensitive to noise 
and compression artifacts introduced by prior-generation encoding. 

But in principle, we believe that techniques for detecting "original" 
or "true" resolution provide the right tools for addressing the 
described problem. We will utilize several of these techniques in 
our proposed solution. 

2  PROPOSED SOLUTION 
We show the overall processing chain in our system in Figure 2. 
The primary operations are "true resolution" detection and a CAE 
encoding ladder generator [6,8]. In this work, we use the CAE tool 
provided by the Brightcove VideoCloud system [25,26]. Our 
resolution detector is aided by a codec noise analyzer [27,28]. This 
analyzer predicts the PSNR of the codec-introduced noise level in 
the encoded mezzanine we receive as input.  

2.1 Resolution detection algorithm 
Figure 3 shows the flow of operations within our detector. The 
candidate horizontal and vertical resolutions are detected 
separately, utilizing row and column data in each frame. In both 
cases, we turn data in the DFT domain [29], extract spectral 
features, and perform an initial selection of candidate resolutions in 
both directions. The choice of the best joint (horizontal, vertical) 
resolution pair follows as a final step. If the system finds no 
compelling candidate resolutions or cues that the video is upscaled, 
it reports the mezzanine resolution as "true resolution.". 

2.2 Frequency-domain processing  
Figure 4 explains several DFT spectral-domain parameters we use 
for detection. Parameter 𝑓𝑓N denotes the Nyquist frequency of the 
mezzanine sampled data. Parameter 𝑓𝑓𝑐𝑐 represents the "true 
resolution" frequency under the test. The shaded regions show 
amplitude spectrum parts before and after 𝑓𝑓𝑐𝑐. Integrals of squared 
amplitude spectrum (or "energies") below and after 𝑓𝑓𝑐𝑐 are denoted 
by 𝐸𝐸𝑓𝑓<𝑓𝑓𝑐𝑐 and 𝐸𝐸𝑓𝑓≥𝑓𝑓𝑐𝑐, respectively.  

The dotted line moving from the right shows potential overlap with 
an adjacent spectral image. This overlap is the cause of classic 
aliasing artifacts [29]. The so-called "post-aliasing" artifacts [30] 
also relate to the presence of the conjugate-symmetric spectral 
components coming from the adjacent spectral image. 

In theory, the ideal filter designs must eliminate both types of 
aliasing artifacts from signals. But none of the practical filter 
designs are achieving this objective. Furthermore, as explained 
in [30], some minor aliasing and post-aliasing artifacts are quite 
normal and acceptable in practice. We will use their presence as 
cues in our detector. 

To detect them in the vicinity of 𝑓𝑓𝑐𝑐, we use correlation metric: 

𝜌𝜌𝑓𝑓𝑐𝑐
∗ =

∑ 𝑥𝑥𝑖𝑖𝑖𝑖[𝑓𝑓𝑐𝑐 − 𝑢𝑢] ⋅𝑢𝑢 𝑥𝑥𝑖𝑖𝑖𝑖[𝑓𝑓𝑐𝑐 + 𝑢𝑢]

�∑ 𝑥𝑥𝑖𝑖𝑖𝑖[𝑓𝑓𝑐𝑐 − 𝑢𝑢]2𝑢𝑢 ⋅ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖[𝑓𝑓𝑐𝑐 + 𝑢𝑢]2𝑢𝑢
, 

 
Figure 2: Overall processing chain in the proposed system.  



 
 

where xim[.] are imaginary parts of the DFT spectral components. 
A Gaussian-smoothed window of +-32 spectral lines around 𝑓𝑓𝑐𝑐 is 
used for computing these quantities. We first compute such metrics 
for each line or column in a frame. We then aggregate the results 
for this frame and for the entire sequence. 

The other cue that we employ is a "sharp decline" effect discovered 
in [19]. Its presence relates to de-attenuation in transition bands of 
filters that may have been previously applied. In Figure 4, we 
illustrate it by gap denoted δfc. We compute it as follows: 

𝛿𝛿𝑓𝑓𝑐𝑐 =
𝜆𝜆[𝑓𝑓𝑐𝑐]

median(𝜆𝜆[𝑓𝑓𝑐𝑐 −𝑚𝑚], … ,𝜆𝜆[𝑓𝑓𝑐𝑐 + 𝑚𝑚]), 

where λ[.] denote logarithm-domain amplitudes of spectral 
components averaged across the entire sequence [19]. The 
median(.) denotes the median filter. A +-32-point window around 
𝑓𝑓𝑐𝑐 is used to compute this criterion. 

Both aliasing and shape decline criteria typically point to the same 
candidate frequency. But, in some rare cases, these detectors may 
disagree, show several candidates, or fail to detect any. To resolve 
such ambiguities and improve the robustness of our method in 
general, we must apply several additional constraints. For this 
purpose, we use signal energies in each band 𝐸𝐸𝑓𝑓<𝑓𝑓𝑐𝑐 and 𝐸𝐸𝑓𝑓≥𝑓𝑓𝑐𝑐, as 
well as an estimate of codec-introduced noise as present in the 
mezzanine 𝐸𝐸N,Mez. 

The first check compares the energy of the signal past our candidate 
𝑓𝑓𝑐𝑐 to the mezzanine noise level: 

𝐸𝐸𝑓𝑓≥𝑓𝑓𝑐𝑐 < 𝐶𝐶1 �
𝑓𝑓𝑁𝑁 − 𝑓𝑓𝑐𝑐
𝑓𝑓𝑁𝑁

�𝐸𝐸𝑁𝑁,𝑀𝑀𝑀𝑀𝑀𝑀. 

The second check compares the energy of the signal past 𝑓𝑓𝑐𝑐 to the 
signal's energy: 

𝐸𝐸𝑓𝑓≥𝑓𝑓𝑐𝑐 < 𝐶𝐶2 ⋅  𝐸𝐸𝑓𝑓<𝑓𝑓𝑐𝑐 . 

Both tests ensure that the choice of 𝑓𝑓𝑐𝑐   as "true resolution" won't 
remove any meaningful signal components. The constants C1 and 
C2 are empirically chosen based on the corresponding bounds 
observed in a dataset of videos with various types of conversions 
and transcoding operations. 

2.3 Final checks and resolution selection 
The last block, shown in Figure 3, performs the final "true 
resolution" selection based on candidate frequencies supplied by 
horizontal and vertical detectors. This block applies a few 
additional rules, disqualifying impossible or highly improbable 
combinations based on SAR/DAR constraints, and selects a pair of 
horizontal + vertical resolutions to report. If none of the candidates 
pass final safety checks, the detector outputs full mezzanine 
resolution as a default choice. 

 3  EXAMPLE OF OPERATION 
To show how the proposed design works, we will use a "Tears of 
Steel" sequence [31] coming in a wide-screen 1920x800 format, 
which we convert to 16:9 DAR by taking the midsection and 

 

Figure 3: Processing chain within true resolution detector.   

 

Figure 4: Spectral features used by resolution detector.   

 



 

scaling it up to 1080p. Therefore, this video's "true resolution" is 
only 1422.2 x 800 pixels. 

We then encode this video using: (1) a standard HLS ladder for 
H.264 and 16:9 content [4], (2) a ladder generated by Brightcove 
CAE [25], treating the input as 1080p, and (3) a ladder generated 
by Brightcove CAE with "true resolution" detection enabled. 

Tables 2-4 show the results. First columns list encoding ladder 
parameters: codec, profile, and resolution of each stream as 
encoded. Then we list "true width" and "true height," with 
resolution parameters clipped by the true resolution limits. Then we 
list encoding bitrates and SSIM quality values [32]. The final 
column lists the load probabilities of each rendition, retrieved by 
the Brightcove analytics system [26] after the playback. In the 
bottom lines, we report average bitrates, SSIM scores, and average 
resolution delivered to viewers during the playback. The storage 
values report the sums of bitrates of all renditions in each profile.  

Tables 2 and 3 show improvements achieved by standard CAE vs. 
HLS reference profile. We observe that average bitrates went down 
to 3386 kbps from 5705 kbps, storage is now 7912 kbps vs. 25640 

kbps, and the number of streams is 6 vs. 9 initially—very 
significant improvements in all domains.  

Table 4 shows additional improvements delivered by CAE with the 
"true resolution" detection method enabled. We note that the 
average bitrate is now 2502 kbps vs. 3386 kbps, an extra 26.1% 
saving in bandwidth, and that overall storage is now 6159 kbps vs. 
7912 kbps, a saving of 22.1%. The SSIM statistics are similar to 
the standard CAE. And yet, we also note that the average effective 
resolution as delivered is now 1394x784 vs.1392x783 – another 
slight improvement. The "true resolution" detection has worked – 
the top rendition resolution is now 1440x810 (a rounded-up 
1422x800), enabling all mentioned improvements.  

3 EXPERIMENTAL STUDY 
Finally, in this section, we present the results of an experimental 
study assessing the effects of CAE and CAE with "true resolution" 
detection on the efficiency of streaming systems. 

To perform this study, we used a corpus of 500 video assets, with 
a combined duration of over 120 hours, representing 33 different 
content categories, such as action movies, sports, documentaries, 

` Table 2: Encoding and streaming statistics for HLS reference encoding ladder [4] 

Rendition Codec Profile Width Height True Width True Height Bitrate [kbps] SSIM Pr 
1 h264 High 416 234 416 234 145 0.9390 0.0049 
2 h264 High 640 360 640 360 365 0.9604 0.0050 
3 h264 High 768 432 768 432 730 0.9739 0.0076 
4 h264 High 768 432 768 432 1100 0.9817 0.0336 
5 h264 High 960 540 960 540 2000 0.9858 0.0710 
6 h264 High 1280 720 1280 720 3000 0.9860 0.1261 
7 h264 High 1280 720 1280 720 4500 0.9898 0.1298 
8 h264 High 1920 1080 1422 800 6000 0.9874 0.1557 
9 h264 High 1920 1080 1422 800 7800 0.9896 0.4586 
Average 

  
 

 
1316 740 5705 0.9878 

 

Storage 
  

 
  

 25640 
  

Table 3: Encoding and streaming statistics for CAE 

Rendition Codec Profile Width Height True Width True Height Bitrate [kbps] SSIM Pr 
1 h264 High 384 216 384 216 145 0.9421 0.0032 
2 h264 High 512 288 512 288 267 0.9572 0.0039 
3 h264 High 768 432 768 432 534 0.9656 0.0096 
4 h264 High 1024 576 1024 576 1068 0.9745 0.0426 
5 h264 High 1600 900 1422 800 2136 0.9773 0.1245 
6 h264 High 1920 1080 1422 800 3763 0.9823 0.8084 
Average 

   
 1392 783 3386 0.9810 

 

Storage 
   

 
 

 7912 
  

Table 4: Encoding and streaming statistics for CAE with true resolution detection 

Rendition Codec Profile Width Height True Width True Height Bitrate [kbps] SSIM Pr 
1 h264 High 384 216 384 216 145 0.9421 0.0030 
2 h264 High 512 288 512 288 257 0.9556 0.0036 
3 h264 High 768 432 768 432 488 0.9627 0.0082 
4 h264 High 1024 576 1024 576 977 0.9720 0.0198 
5 h264 High 1280 720 1280 720 1667 0.9769 0.0594 
6 h264 High 1440 810 1422 800 2625 0.9815 0.8984 
Average 

   
 1394 784 2502 0.9806 

 

Storage 
   

 
 

 6159 
  

 



 
 

etc. All these assets were real-world 1080p and 720p mezzanines 
sampled from existing OTT distribution workflows. Each video 
was subsequently encoded using three encoding profiles (HLS 
reference [4], CAE, and CAE with enabled "true resolution" 
detection (CAE+TR). Then we instrumented players to play the 
content and collected the playback statistics.  

Table 6 presents the results. The top rows present performance 
statistics as observed for each content category. The last three rows 
show the overall statistics across all categories, the relative savings 
delivered by CAE vs. reference profile, and the CAE + true 
resolution vs. standard CAE.  

As can be observed, CAE savings are very significant. Overall, we 
note an almost 40% savings in bandwidth and about 65% savings 
in storage compared to the reference HLS profile over this test set.  

However, the savings are even higher with "true resolution" 
detection. We observe that, on average, "true resolution" detection 
brings about 9.38% extra savings in bandwidth relative to the 
standard CAE. In terms of storage, the additional savings are 
11.25%. There is also a considerable reduction in the number of 
encoded streams. On a per-category basis, we observe even higher 

savings. For example, we notice 26.97% savings in bandwidth and 
28.41% in storage for basketball content. These are significant 
savings realized by using a sample of real-world media content.  

6  CONCLUSIONS 
We have discussed the problems posed by up-converted media 
content for video streaming applications. We have explained the 
origins of this problem, surveyed several existing tools and 
techniques that may be useful for addressing it, and proposed a 
method integrating them into a practical and easily deployable 
solution. 

The presented experimental results indicate that the proposed 
solution is effective. Using a dataset with real-world mezzanines, 
we observed average bandwidth savings of approximately 9.38% 
and storage savings of 11.25%. Across different content categories, 
we noted that the savings are approaching 26.97% and 28.41% in 
bandwidth and storage usage, respectively.  

We find these results both encouraging and alarming. On the one 
hand, they show that our proposed tool works and is effective. But 
on the other, they also indicate that a significant percentage of 
videos as distributed OTT today are, in fact, upscaled. 

Table 5: Performance of HLS reference encoding vs. CAE and vs. CAE with true resolution detection. 

Content Category Renditions Storage [kbps] Bandwidth [kbps] 
Ref. CAE CAE+TR Ref. CAE CAE+TR Ref. CAE CAE+TR 

Action 9.00 6.08 6.08 24361 8221 7890 5420 3477 3319 
Adventure 9.00 6.17 6.17 25803 8964 8602 5741 3648 3516 
Baseball 7.00 5.12 5.00 11477 4389 3631 3823 2086 1739 
Basketball 8.61 6.06 5.76 23684 8036 5753 5530 3441 2513 
Beach Volleyball 9.00 6.91 6.21 25858 12004 8432 5753 4506 3538 
Boxing 9.00 6.00 6.00 25588 7590 6388 5693 3225 2622 
Cartoon 9.00 5.84 5.70 25256 6690 5791 5619 2923 2545 
Comedy 9.00 6.26 6.26 26655 9081 8700 5931 3516 3389 
Cricket 7.00 5.00 4.32 12222 3231 2578 4072 1470 1296 
Cycling 9.00 6.00 5.96 26272 8036 6805 6146 3289 2757 
Documentary 9.00 6.50 6.47 24804 10226 9886 5519 3935 3787 
Drama 9.00 6.17 6.17 26560 8492 8188 5910 3498 3362 
Field Hockey 9.00 6.92 6.55 26180 11478 9808 5825 4242 3816 
Football 7.45 4.67 4.67 14964 4055 3302 4346 1578 1375 
Game Show 9.00 6.20 5.89 25137 8615 7870 5593 3566 3374 
Gymnastics 9.00 6.00 6.00 24396 7111 6428 5707 2902 2902 
Interview 7.07 4.40 4.05 11794 2591 2042 3839 1224 1003 
Kids Channel 9.00 6.31 6.24 25292 9521 9141 5628 3829 3650 
Late night show 9.00 6.28 5.50 24736 8722 6918 5786 3530 2923 
Mixed Sports 9.00 6.84 6.74 24783 12260 11683 5514 4472 4328 
News 9.00 6.51 6.23 26893 10038 9088 6291 3869 3666 
Reality 9.00 6.50 6.43 25501 10044 9567 5674 3907 3760 
Running 9.00 6.37 6.00 24663 9291 7352 5488 3828 3197 
Scifi 9.00 6.18 6.12 24370 8933 8457 5422 3670 3519 
Sitcom 9.00 5.99 5.98 24381 7284 6773 5425 3061 2863 
Soap 9.00 6.14 6.03 25327 8185 7684 5635 3394 3239 
Squash 9.00 6.00 6.00 25721 6990 6247 5723 3030 2711 
Swimming 9.00 7.00 7.00 25823 13874 12993 5746 4784 4614 
Tennis 7.00 5.00 5.00 11961 3553 3047 3984 1711 1450 
Weightlifting 9.00 5.90 5.71 25915 6085 5165 5766 2616 2257 
Overall 8.67 6.04 5.87 23212 8119 7206 5418 3274 2967 
CAE vs Ref [%] 

 
-30.30 -32.25 

 
-65.02 -68.95 

 
-39.57 -45.23 

CAE+TR vs CAE [%] 
  

-2.81 
  

-11.25 
  

-9.38 
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