
Towards Mass Deployment of CMAF

Robert Peck, Jordi Cenzano, Xiangbo Li, Yuriy Reznik
Brightcove, Inc.

Seattle, WA
{rpeck, jcenzano, xli, yreznik}@brightcove.com

Abstract - Since its inception, the CTA WAVE project and

its members have made significant progress in bringing

CMAF technology closer to mass deployment. There are now

finalized and published Content and Web Media API

specifications, as well as operational test suites and clients

capable of playing CMAF content. In this paper, we discuss

the benefits that adoption of CMAF will bring, as well as

challenges that the implementation community may still face

in updating their existing OTT media publishing workflows to

support CMAF. We will share specific examples and

experiences that the engineering team at Brightcove had in

building support for CMAF.

INTRODUCTION

Common media application format (CMAF), also known as

MPEG-A Part 19 or ISO/IEC 23000-19 [1], is an MPEG

standard, developed in 2015-2017, designed with the goal of

unifying media formats used by different HTTP-based

streaming systems, such as HLS [2] and MPEG DASH [3].

Perhaps not surprisingly, the timeline for development of this

specification has coincided with Apple’s decision to adopt

ISO base media file format [4] (informally known as “MP4”

or “fragmented MP4” or “fMP4”) as a container for HLS [6],

making it “almost compatible” DASH. Thus, the CMAF

development has captured the opportunity to bring both

systems together.

The benefits of unifying container formats for HTTP

streaming can be easily grasped by looking at typical delivery

workflows, presented in Figures 1 and 2 respectively. Figure

1 shows OTT streaming system using 4 different streaming

formats: HLS, DASH, Smooth streaming [7], and HDS [8].

In order to publish a given content item, this system runs a

cloud transcoder producing 4 different sets of renditions,

prepared according to each streaming delivery format. Then

all such 4 sets of encodings are used for delivery through a

CDN. Naturally, this increases delivery costs, as more content

needs to be transmitted. This also diminishes the efficiency of

the CDN, as multiple versions of the same encoded content

will now need to compete for CDN cache space at the edge

servers. Figure 2 shows a system enabling delivery in both

DASH and HLS, but using CMAF as a common format. Only

one set of encodings needs to be produced and delivered

through a CDN. This reduces the costs, increases

effectiveness of the CDN, and hence it also increases quality

that can be appreciated by end users.

While, as shown in this example, the benefits of CMAF

are undisputable in a scenario when it is universally supported

by all receiving devices, in practice, the adoption of a new

standard may take a long time. In order to promote and foster

adoption of CMAF a CTA WAVE project was created [9,10].

The first meeting of CTA WAVE member companies

occurred during CES 2016, and over the course of the last 2

years this group has made remarkable progress in moving

industry towards transition to this new standard.

FIGURE. 1: MULTI-PLATFORM OTT WORKFLOW WITH MULTIPLE FORMATS.

FIGURE. 2: MULTI-PLATFORM OTT WORKFLOW WITH CMAF.

In this paper, we will describe some key elements of the

CMAF design, explain how they map to HLS and DASH

implementations, additional limits imposed by CMAF and

WAVE Content Specification [11], and measures that one

needs to take to make sure that content that is being encoded

today can be transmuxed to CMAF. We will further discuss

an approach that Brightcove took for gradual deployment of

CMAF, considering that only a subset of devices can play it

currently.

CMAF OVERVIEW

The Common Media Application Format (CMAF) for

segmented media [1] is an extensible standard for the

encoding and packaging of segmented media objects for

delivery and decoding on end user devices in adaptive

multimedia presentations. Delivery and presentation are

abstracted by a hypothetical application model that allows a

wide range of implementations including HLS [2] and

DASH [3].

The CMAF specification defines several logical media

objects:

● CMAF Track: contains encoded media samples,

including audio, video, and subtitles. Media samples

are stored in a CMAF specified container derived

from the ISOBMFF [4]. Media samples may

optionally be protected by MPEG Common

Encryption [5]. Tracks are made up of a CMAF

Header and one or more CMAF Fragments.

● CMAF Switching Set: contains alternative tracks that

can be switched and spliced at CMAF Fragment

boundaries to adaptively stream the same content at

different bit rates and resolutions.

● Aligned CMAF Switching Set: two or more CMAF

Switching Sets encoded from the same source with

alternative encodings; for example, different codecs,

and time aligned to each other.

● CMAF Selection Set: a group of switching sets of the

same media type that may include alternative

content (for example, different languages or camera

angles) or alternative encodings (for example,

different codecs).

● CMAF Presentation: one or more presentation time

synchronized selection sets.

Generally, CMAF presentation is the first point where

different media types can be combined. In addition to above

objects, CTA WAVE content specification [11] also defines

● WAVE program: a sequence of CMAF Presentations

with consistent encoding constraints enabling

continuous rendering.

The CMAF Hypothetical Reference Model defines how

tracks can be delivered, combined, and synchronized in

CMAF Presentations, allowing many possible compatible

implementations. It is thus possible to create HLS Playlists

and a DASH Media Presentation Description, that share the

same resources, CMAF Addressable Objects, thereby

allowing efficient caching even when delivering to multiple

platforms.

CMAF Addressable Media objects consist of:

● CMAF Header: contains information that includes

information for initializing a track.

● CMAF Segment: A sequence of one or more

consecutive fragments from the same track.

● CMAF Chunk: A chunk contains a sequential subset

of samples from a fragment.

● CMAF Track File: A complete track in one

ISOBMFF file.

We note that CMAF track file is logical concept, as

CMAF assumes that actual deployment workflow may

implement late binding, and that fragments do not have to be

stored in a single physical file. How it should be stored and in

which order things should be processed is left to

implementations.

We illustrate the intended model of usage of CMAF

objects in Figure 3.

MAPPING BETWEEN CMAF, HLS, AND DASH

As it becomes clear from the above survey, the terminology

and meaning of some terms in CMAF do not correspond

exactly to terms used by HLS or DASH, or even ISOBMFF.

Hence, in order to explain what is actually meant by each

CMAF addressable media objects, in Figure 4 we show their

intended mapping to boxes in ISOBMFF.

FIGURE. 3: MODEL OF USAGE OF CMAF ADDRESSABLE MEDIA OBJECTS.

FIGURE. 4: CMAF ADDRESSABLE MEDIA OBJECTS.

CMAF HLS DASH

Manifest HLS Master Playlist and
associated Media Playlist

(.m3u8) files

Media Presentation
Description (.mpd)

file

Presentation Presentation defined by HLS
Master Playlist and associated

Media Playlists with aligned

start points.

DASH Period and
associated

Adaptation Sets

defined in MPD.

Selection

set

Sets of parallel tiers of Media

Playlists defined by

appropriate sets of EXT-X-
STREAM-INF tags. Such tiers

could be defined, e.g. for

different codecs.

A group of

Adaptation Sets

defined for each
Period in MPD.

Switching
set

A set of Media Playlists or
Variant Streams that can be

used by player to play

presentation.

DASH Adaptation
Set

Track HLS Variant Stream (specified

by Media Playlist URI and

EXT-X-STREAM-INF tag
describing its properties),

restricted to single media type

DASH

Representation

restricted to single
media type.

Header Media Initialization Section,

defined by EXT-X-MAP tag

DASH Initialization

Segment

Segment Sequence of fMP4 segments

within same variant stream

Sequence of DASH

segments within

same representation

Fragment HLS fMP4 segments limited to
single media type (i.e. audio or

video)

DASH segment
limited to single

media type

Chunk Chunk of fMP4 segment

limited to integral number of

samples

DASH subsegment

Presentation
profile

Only unencrypted or ‘cbcs’
encrypted profile are supported

Unencrypted, and
multiple types of

encrypted profiles

are supported.

TABLE. 1: MAPPING BETWEEN ELEMENTS OF CMAF, HLS AND DASH.

In Table 1, we further explain a possible mapping

between CMAF objects and their implementations in HLS

and DASH. We immediately note that this mapping is not

symmetric. For instance:

● CMAF presentation could be described as Period in

DASH, but DASH, in principle, allows multiple

periods, while CMAF, in its scope is restricted to

only one.

● CMAF tracks, segments, and fragments can only

include single media types (e.g. audio or video),

while in HLS or DASH one can multiplex multiple

media types in the same segments.

● CMAF defines the concept of Chunks, which can be

mapped to subsegment in DASH terminology, but

not something that is specifically defined in HLS.

● CMAF defines several types of encrypted

presentation profiles, of which HLS only supports

‘cbcs’ profile.

What practically all these differences mean is that

encodings of streams with the intent of packaging to CMAF

have to be done somewhat differently. Separate files have to

be created for each data type. Encryption should be with

‘cbcs’ or delayed till the point when it is understood which

manifest is used. In cases when low delay is desired, chunk-

based encoding should be used, producing addressable

fragments and chunks as specified by CMAF.

There are, however, also many additional encoding

constraints can also be inferred from text of CMAF [1], as

well as WAVE content specification [11].

CMAF AND WAVE PROFILES

WAVE content specification [11] defines several media and

presentation profiles, summarized in Tables 2, 3, 4, and 5.

Table 2 presents WAVE video profiles. The WAVE

“HD” profile coincides with HD profile defined in CMAF

specification [1], Table A1, which further defines maximum

resolution of 1080p and maximum framerate of 60fps.

Table 3 presents WAVE audio profiles. The WAVE

“AAC Core” and “AAC Adaptive” profiles coincide with

same-named profiles defined in CMAF specification [1],

Table A2, where “AAC Adaptive” is understood as a

constrained subset of “AAC Core”, enabling adaptive

switching (this relates to the fact that HE-AAC and HE-AAC

v2 profiles enable additional tools requiring longer delays

than AAC-LC, and unless the encoder does extra work to

mask the their effects in the vicinity of segment boundaries,

the switching may produce audible artifacts).

Table 4 presents WAVE profiles for subtitles and

captions. It is much narrower than subtitle profiles allowed by

Table A3 in the CMAF specification [1], and certainly

narrower than current subtitle support in both HLS and

DASH. Basically, what is intended to be used are TTML

IMSC1 subtitles, and gone are CAE 608/708 and WebVTT.

Finally, Table 5 presents 3 presentation profiles currently

defined by the WAVE content specification [11]. All 3

profiles have the same constraints to audio, video, and

subtitles, but differ in Encryption scheme. The HLS-based

implementations, should be able to use CMFHD and

CMFHDs profiles, while DASH-based implementations may

also be able to use CMFHDc.

Media

Profile
Codec Codec

Profile
Level Color Transfer Brand

HD AVC High 4.0 1 (709) 1 (709) ‘cfhd’

HHD10 HEVC Main10

MainTier

4.1 1 (709) 1 (709) ‘chh1’

UHD10 HEVC Main10
MainTier

10-bit

5.1 1 (709)
9 (2020)

1 (709)
14 (2020)

‘cud1’

HLG10 HEVC Main10

MainTier
10-bit

5.1 9 (2020) 18 (HLG)

14 (2020)

‘clg1’

HDR10 HEVC Main10

MainTier
 10-bit

5.1 9 (2020) 16 (PQ) ‘chd1’

Notes: 709 = ITU-R BT.709, 2020 = ITU-R BT.2020, HLGPQ= ITU-R BT.2100

TABLE. 2: WAVE VIDEO PROFILES.

Media Profile Codec
Family

Codecs

Profiles
Level Brand

AAC Core AAC AAC-LC,

HE-AAC or

HE-AAC v2

2 ‘caac’

Adaptive AAC Core AAC AAC-LC,

HE-AAC or

HE-AAC v2

2 ‘caaa’

AAC Multichannel AAC AAC-LC,

HE-AAC

6 ‘camc’

Enhanced AC-3,

including AC-3

AC-3

EAC-3

AC-3

EAC-3

n.a. ‘ceac’

AC-4, Single Stream AC-4 AC-4 3 ‘ca4s’

MPEG-H,

Single Stream

MPEG-H LC 3 ‘cmhs’

DTS-HD Audio DTS-HD DTS,
DTS-HD

n.a. ‘dts1’

xHE-AAC USAC xHE-AAC 4 'cxha'

TABLE. 3: WAVE AUDIO PROFILES.

Media Profile Description Brand

TTML IMSC1 Text IMSC1 Text Profile ‘im1t’

TTML IMSC1 Image IMSC1 Image Profile ‘im1i’

TTML IMSC1.1 Text IMSC1.1 Text Profile ‘im2t’

TTML IMSC1.1 Image IMSC1.1 Image Profile ‘im2i’

TABLE. 4: WAVE SUBTITLES PROFILES.

Presentation

Profile

Required

Video

Media

Profile

Required

Audio

Media

Profile

Required

Subtitle

Media

Profile

Allowed

Encryption

Scheme

CMFHD ‘cfhd’
HD AVC

‘caac’
AAC Core

‘im1t’
TTML

IMSC1

Text

None

CMFHDc ‘cfhd’

HD AVC

‘caac’

AAC Core

‘im1t’

TTML

IMSC1

Text

‘cenc’

CMFHDs ‘cfhd’
HD AVC

‘caac’
AAC Core

‘im1t’
TTML

IMSC1

Text

‘cbcs’

TABLE. 5: CMAF PRESENTATION PROFILES.

CMAF AND WAVE ENCODING CONSTRAINTS

CMAF specification [1] further defines a number of

constraints that compressed audio and video streams must

satisfy. For example, for video codecs, this includes:

● Track-level constraints:

o Same bit-depth across tracks

o Same chroma sampling formats

o Must include VUI parameters

o Must have continuous frame numbers

● Switching-set-level constraints:

o All tracks must have same DAR, although

SARs and frame sizes may differ

o All tracks must be encoded using same

source, same color space, transfer function,

color primaries, color volume, brightness,

bitdepth, and presentation timing

o All tracks in a switching set must have same

initialization constraints (CMAF headers).

The Annex A of WAVE content specification [11]

provides some additional constraints that are intended to be

used across WAVE programs:

● All presentations must have consistent picture

aspect ratio (which effectively means same SAR and

DAR for all tracks)

● All presentations should have consistent framerate

● Must have same audio channel layout

● Must have consistent video color characteristics.

In summary, in many aspects, CMAF and WAVE

specifications appear to be more restrictive than existing

deployment guidelines for HLS or DASH. But the next

question that arises is – how one can enable delivery to CMAF

decoding capable devices while also supporting HLS and

DASH delivery to legacy ones?

To provide one possible answer, in the next section we

will describe architecture of a multi-platform OTT system

that was developed by Brightcove.

BRIGHTCOVE VIDEOCLOUD PLATFORM

In Figure 5 we present high-level architecture of Brightcove

VideoCloud platform [12]. This is a cloud-based media

delivery system, including multiple functional components,

and assuming certain order of events in its publishing chain.

I. Job request, ingest and transcoding

The request to publish content is usually made by an

operator, who also places the content on a certain origin server

and provides its URL as part of the request.

The ingest and transcoding of the content is subsequently

done by a cloud transcoder (in this case Zencoder [13]). There

are actually 2 steps in the transcoding operation. First is an

encoding profile generation, which produces a ladder of

resolutions, rates, and other codec constraints to be applied to

all renditions forming ABR adaptation set (or CMAF

switching set) for a given content. This step is done by a

component which we call Context Aware Encoding or CAE

[14-16]. Once encoding profiles are created, all renditions are

subsequently produced by the cloud transcoder. Profile

generation and transcoding is done separately for audio and

video tracks, and pluralities of such streams along with

additional metadata are then stored in internal storage that

belongs to the dynamic delivery system.

II. Device detection and manifest generation

The dynamic delivery system is essentially a layer

orchestrating selective transmuxing, encryption and

placement of content on CDNs. It is effectively driven by

player’s requests. Once the player sends a request for media

though a playback API, the dynamic delivery system

generates a list of manifest URLs, representing all possible

permutations of delivery protocols (HLS, DASH, Smooth,

etc.), file formats, codecs, and DRMs that may be supported

by the receiving devices. HLS and DASH manifests relying

on CMAF as a common format represent a subset of this list.

After the player receives the list of URLs, it picks the one

that fits the best business and technical requirement and then

pulls corresponding manifest from CDN. If the manifest is not

in the CDN yet, the dynamic delivery system will be invoked

and the missing manifest will be generated, and delivered

through CDN to the player.

In cases when a requested manifest has not yet been

generated, the dynamic delivery system first tries to identify

the type and capabilities of a device that is requesting it. This

process is called device detection. The list of properties that

device detection is trying to establish is shown in Table 1.

Property Possible values

Device type PC, smartphone, tablet, TV, etc.

OS type / version Android 6.0, iOS 11, etc

Browser type/version Chrome 51, Mozilla 5.0, etc

Geographic region of device Country code

Video codec support H.264 baseline, H.264, HEVC, etc.

Supports codec switching Yes/No

Maximum supported

resolution

1080p, 540p, 480p, etc.

Maximum supported bitrate 128kbps, 1.2Mbps, 10Mbps, etc.

TABLE. 1: EXAMPLE PROPERTIES OF DEVICE.

Once device properties are established, and metadata

related to encoded content are retrieved, a manifest targeting

this specific device is generated. This is a selective process,

where only renditions that match decoding capabilities of the

devices are included in the final manifest. Furthermore, the

targeting of manifest is controlled by certain rules that the

operator may specify. E.g. operator may specify to use

different CDNs in different geo locations, or impose different

limits on maximum resolutions and rates, etc. Such

customization is done by rules engine, using rules API as the

interface to the operator.

III. Just-in-time packaging

When manifest is finally received by the player, it starts

retrieving media streams according to URLs specified there.

Such media may or may not be present in the CDN. In cases

it is missing, the CDN miss response brings control back to

dynamic delivery system, which activates just-in-time

packager to generate it. To generate such content, the just-in-

time packager retrieves segments of previously encoded

FIGURE 5: HIGH-LEVEL ARCHITECTURE OF BRIGHTCOVE VIDEOCLOUD PLATFORM.

component (audio and video) streams from storage and

transmuxes them by converting them to a particular form of

ISOBMFF or TS segments as needed for delivery. The

intermediate format used for storage and additional metadata

make such conversion a fairly light-weight process. Support

of CMAF comes here as one of the formats supported by the

transmuxer.

Once the missing segment is generated, it is passed back

to the CDN, and then subsequently to the player. Note that

such transmuxing operation needs to be applied only for

content that has not yet been cached by CDN or which is used

so infrequently that it got purged.

IV. End-to-end optimizations

The Brightcove VideoCloud system also includes means for

end-to-end performance optimizations, such as collection of

bandwidth and usage statistics, and their use in CAE profile

generation. The details about such optimization process and

related science can be found in [15-17].

ROAD TOWARDS MASS DEPLOYMENT OF CMAF

As of time of this writing, the list of devices that can

support CMAF is fairly limited. According to Apple technical

note [18], the support for CMAF on Apple devices starts with

iOS 10.0, macOS 10.12, and tvOS 10.0 or later OS versions.

To reach majority of desktops, certain modifications are

needed in the web players, and such work is currently under

way [18].

But even with limited CMAF support as of now, it is clear

that some such devices already exist and that they are fully

functional. Everything that is needed to support proper CMAF

content generation is also already in place. The resources

outlined in [18] include detailed content specification, content

validator, system conformance suite, etc.

In our experience we have found that adding CMAF to a

system that already supports dynamic transmuxing to several

existing delivery formats is relatively simple, and boils down

to a few elements: more restrictive profile generation and

encoding, adding an extra flavor of ISOBMFF transmuxer,

and adding extra rules to HLS and DASH manifest generators

to produce CMAF-compatible manifests.

While in the short term CMAF most likely will have to

co-exist with other varieties of HLS, DASH, and some other

delivery formats, the more devices will become capable of

decoding it, the clearer benefits we will start to see. Even with

dynamic transmux and delivery, the use of CDNs still remains

suboptimal, with multiple versions of same content

competing for CDN cache at the edge. The more players will

start picking CMAF packaged versions, the higher will be

probability that such content will be in cache. That will

increase quality of experience, and will also lower delivery

costs. This is a win-win situation for both publishers and

consumers.

REFERENCES

[1] ISO/IEC 23000-19:2018, “Information technology - Coding of

audio-visual objects - Part 19: Common media application
format (CMAF) for segmented media”.

https://www.iso.org/standard/71975.html

[2] R. Pantos and W. May, “HTTP live streaming, RFC 8216,”

https://tools.ietf.org/html/rfc8216, August 2017.

[3] ISO/IEC 23009-1:2014, “Information technology – Dynamic

adaptive streaming over HTTP (DASH) – Part 1: Media

presentation description and segment formats”,

https://www.iso.org/standard/65274.html

[4] ISO/IEC 14496-12:2015, “Information technology -- Coding of
audio-visual objects -- Part 12: ISO base media file format”,

https://www.iso.org/standard/68960.html

[5] ISO/IEC 23001-7:2016, “Information technology -- MPEG
systems technologies -- Part 7: Common encryption in ISO base

media file format files”,

https://www.iso.org/standard/68042.html

[6] T. Siglin, “HLS Now supports fragmented MP4, making it

compatible with DASH”,

http://www.streamingmedia.com/Articles/News/Online-Video-

News/HLS-Now-Supports-Fragmented-MP4-Making-it-

Compatible-With-DASH-111796.aspx

[7] A. Zambelli, Smooth streaming technical overview, Microsoft

Corp., Redmond,WA, USA, Tech. Rep. [Online]. Available:
http://www.iis.net/learn/media/on-demand-smooth-

streaming/smooth-streamingtechnical-overview

[8] Adobe HDS streaming specifications,

https://www.adobe.com/devnet/hds.html

[9] CTA WAVE project, https://cta.tech/Research-

Standards/Standards-Documents/WAVE-Project/WAVE-

Project.aspx

[10] “Internet Video Leaders Announce Interoperability Effort”,

Consumer Technology Association, Dec 2, 2015,
https://www.cta.tech/News/Press-

Releases/2015/December/Internet-Video-Leaders-Announce-

Interoperability-E.aspx

[11] CTA-5001, “Web Application Video Ecosystem – Content

Specification”, April 2018,

https://cta.tech/cta/media/EventImages/TechStandards/CTA-

5001-Final_v2_pdf.pdf

[12] Brightcove VideoCloud. https://www.brightcove.com/en/online-

video-platform

[13] Zencoder https://zencoder.com/en/

[14] Brightcove CAE https://www.brightcove.com/en/context-aware-

encoding

[15] Y. A. Reznik, K. O. Lillevold, A. Jagannath, J. Greer, and J.

Corley, “Optimal design of encoding profiles for ABR
streaming,” in Proceedings of the 23rd Packet Video Workshop,

New York, NY, USA, 2018, PV ’18, pp. 43–47, ACM.

[16] Y. A. Reznik, X. Li, K. O. Lillevold, A. Jagannath, and J. Greer,
“Optimal design of multi-codec profiles for ABR streaming,”

ICME 2019 – submitted.

[17] Y. A. Reznik, X. Li, K. O. Lillevold, R. Peck, and R. Marinov,
“Optimizing Mass-Scale Multi-Screen Video Delivery”, NAB

2019 – submitted.

[18] “About the Common Media Application Format with HTTP
Live Streaming”,

https://developer.apple.com/documentation/avfoundation/media

_assets_playback_and_editing/about_the_common_media_appli

cation_format_with_http_live_streaming

[19] CTA WAVE Boot Camp 2018 presentation.

https://cta.tech/cta/media/Standards/2018-CTA-Fall-Forum-

WAVE-Boot-Camp-final.pdf

