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Abstract—Resolution is a fundamental property of encoded
video. Understanding the impact of resolution on quality as an
independent parameter can help design better, more efficient
systems, such as selecting optimum rendition in adaptive video
streaming applications. One known quality model that consid-
ers resolution for predicting the perceived picture quality is
the Westerink and Roufs (WR) model, which establishes the
relationship between subjective quality and two parameters of
viewing setup: angular resolution and viewing angle. This paper
first validates the WR model on recent datasets and shows that
it is reasonably accurate. We then propose a generalization of
this model, allowing operation in a broader range of parameters
and with more graceful saturation in extended regions. We
then validate the performance of the proposed Generalized
WR model on the new datasets and show that the proposed
model achieves even a better fit to the recent datasets. We also
demonstrate that the proposed Generalized model can account
for the differences in scaling algorithms, including more advanced
ML-based methods such as super-resolution. We conclude with a
discussion of several possible applications of this model, including
its use to guide the rendition selection decisions in streaming
players and adapt that decision logic based on the upsampling
algorithms used at the player.

Index Terms—Adaptive Streaming, Video Streaming, QoE,
Video Quality Estimation, Rendition Selection, Upsampling.

I. INTRODUCTION

Adaptive streaming, where the playback is adapted based
on the changing network conditions, is the fundamental tech-
nology that has enabled the recent growth of over-the-top
(OTT) streaming services such as YouTube, Netflix, Hulu, and
others. The two of the most widely used formats for adaptive
streaming are HTTP Live Streaming (HLS) [1], and Dynamic
Adaptive Streaming over HTTP (DASH) [2]. To create mul-
tiple representations video is encoded with several distinct
resolution-bitrate parameters. The streaming client (player),
depending on the available network throughput, buffer status,
and player size, selects the appropriate rendition for playback
[3]. The player at the end-user device typically upscales the
lower resolution videos to fit the player/window resolution.
Understanding the impacts of the encoded video resolution
and scaling on the perceived quality is essential for such
applications to allow them to select the optimum rendition [4].

Most of the existing full-reference video quality metrics
(PSNR, SSIM, VMAF, etc.) either ignore the effects of video
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resolution altogether or treat it jointly with codec-introduced
noise [5]. Such metrics are of no help to streaming clients.
Some other metrics, such as Belmudez and Möller model [6],
or ITU-T P.1203 metric [7], treat contribution to quality by
video resolution and codec-introduced noise (bitrate) as inde-
pendent parameters. The Westerink and Roufs (WR) model [8]
is the best-known model that predicts the perceived quality
directly based on video resolution [9]. According to this
model, the perceived quality of still pictures projected to the
screen depends on two parameters: (1) the angular span (in
degrees) and (2) the angular resolution (in cycles per degree)
of the projected picture.

The WR model, since its publication, has been validated and
confirmed by other means and techniques, such as Barten’s
SQRI method [10], [11], and others [12] but such validations
were done many years ago on limited datasets. However,
despite its many advantages, the WR model suffers from
certain limitations, primarily due to the limited nature of the
subjective test parameters (limited range of viewing angles
and angular resolutions) used in the model’s design. Also, the
model has no parameters to consider the effects of various
upsampling methods or differences in HDR and SDR content,
resulting in limitations on the model’s applicability to more
advanced display devices.

This paper proposes an extension of the WR model to ad-
dress these limitations. Specifically, the proposed model adapts
to a different dynamic range of the reproduction device and
the upsampling method. We also discuss possible applications
where such a generalized model can be used to achieve higher
gain and increased end-user QoE in the design of streaming
clients.

The rest of the paper is organized as follows. Section II in-
troduces the original WR model and tests its accuracy by using
six modern datasets. Section III presents the Generalized WR
model and tests its accuracy. Section IV presents the results
of tuning the Generalized WR model to HDR content and
different upsampling methods. Section V discusses potential
applications. Section VI presents conclusions and future work.

II. WESTERINK AND ROUFS (WR) MODEL AND ITS
VALIDATION

1) Viewing Angle and Angular Resolution: Consider a
video of resolution w × h (pixels), streamed to a display of
size W × H (pixels) of effective pixel density ρ (pixels per



TABLE I: CHARACTERISTICS OF VIEWING SETUPS AND RESOLUTIONS TESTED FOR THE SIX DIFFERENT DATASETS CONSIDERED IN
THIS WORK.

Characteristic* / Dataset ITU TV AVT-VQDB-UHD-1 NFLX GamingVideoSET ITU Tablet ITU Mobile
Display size 75” 65” 24” 24” 9.7” 5”

Viewing Distance 1.5H 1.5H 3H 3H 18” 12.67”

Display pixel size 3840x2160 3840x2160 1920x1080 1920x1080 1920x1080 1920x1080

Viewing angle 61.3 61.3 33 33 29.3 19.48

Display Nyquist [cpd] 28.272 28.272 28.28 28.28 32.08 48.8018

Video resolutions tested
(resolution -> cpd)

480x360 -> 3.53
960x540 -> 7.07
1280x720 -> 9.42

1920x1080 -> 14.14
3840x2160 -> 28.28

640x480 -> 4.71
1280x720 -> 9.42

1920x1080 -> 14.14
3840x2160 -> 28.28

384x288 -> 5.65
512x384 -> 7.54
720x480 -> 10.60

1280x720 -> 18.85
1920x1080 -> 28.28

640x480 -> 9.42
1280x720 -> 18.85
1920x1080 -> 28.28

1280x720 -> 21.39
1920x1080 -> 32.08

1280x720 -> 32.53
1920x1080 -> 48.80

*Notes: The characteristics of the datasets used in this work (AVT-VQDB-UHD-1 [13], Netflix [14], GamingVideoSET [15] ITU TV [16], ITU Tablet
[16] ITU Mobile dataset [16]) are based on the information provided in the respective dataset. Parameter H in viewing distance refers to the height of the
display in inches. In the absence of any required information, the values are assumed based on usage statistics as reported in [17] and [18].

inch). Let the playback take place over a player of size wp×hp

(pixels) where the viewer is seated at a distance of d (inches)
from the display. The viewing angle (in degrees) then can be
defined as:

ϕ = 2 arctan
( wp

2dρ

)
≈ 180

π

(wp

dρ

)
. (1)

Angular resolution is the inverse of an observation angle
capturing the span of a 2-pixel interval in a video frame
projected to the screen. Such a 2-pixel interval represents the
length of a “cycle” of a waveform with the highest spatial
frequency that may be present in the video. The inverse of
it becomes “cycles per degree”, and that is a unit in which
angular resolution is typically measured and is calculated as:
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We note that in both formulae 1 and 2 the viewing distance
d appears in form of a product with pixel density ρ. This means
that a single relative value of a viewing distance, such as e.g.
viewing distance expressed in display heights:

η =
dρ

H
(3)

is generally sufficient for derivation of both viewing angle (ϕ)
and angular resolution (µ) parameters.

A. WR Model
Westerink and Roufs [8] found that at a constant viewing

distance the subjective quality of still pictures was influenced
independently by both angular resolution and the size of the
displayed picture. Therefore, even if correlated, angular resolu-
tion and image/display size represent two different dimensions.
We define next the necessary terms and the model.

Let ϕ be the viewing angle (in degrees) and µ be the
effective angular resolution of the projected video (in cycles
per degree (cpd)). The perceived picture quality of the video,
Q(ϕ, µ) as estimated by the WR model [8] is:

Q(ϕ, µ) = 3.6 log
(
ϕ

π

180

)
+ 2.9 + 4.6 log(µ)

+ 2.7(log(µ))2 − 1.7(log(µ))3 (4)

This model is henceforth referred to as the Original WR
model. In the subjective test performed for the design of the
mode, the range of viewing angles (ϕ) was from about 2.526 to
18.026 degrees and the range of angular resolutions (µ) used
was from about 2.7 cpd to 38 cpd, which will, henceforth, be
referred to as the “operating range” of the model.

B. Validation of Original WR model on additional datasets

Since the WR model was initially proposed in 1989 and has
since been validated and used in many works [9], [10], [19],
one may still wonder about its suitability more than 30 years
later given newer display technologies. Hence, we perform a
more exhaustive validation on six new, open-source datasets
which have been designed considering different display sizes,
viewing distances and resolutions. The selected open-source
datasets, their respective settings and characteristics are sum-
marized in the Table I.

It can be observed that these datasets cover a diverse range
of use cases – from QCIF (video conferencing) to HD and
UHD types of experiences and viewing setups. Also, the
datasets consist of different content types from gaming to
animation and sports, which is representative of typical content
streamed by any typical modern-era streaming system. The
datasets are also representative of almost all major device types
such as UHD TV to PC monitors to smaller screen devices
such as Mobile and Tablets as used by consumers today. We
also note that these data sets are also exhibiting a variety of
distortions – such as codec noise and/or artifacts introduced
by different up-sampling algorithms. No efforts were also
made to post-process results accounting for differences in
scores based on content. However, to minimize the codec
noise and/or scaling artefacts, for each dataset, if multiple
renditions for particular resolutions are available, we only
consider the subjective quality (MOS) score corresponding
to the highest encoded bitrate representation. However, since
there are a lot of different contents, there will still exist a broad
variation of MOS scores and hence, one should not expect a
perfect fit. Since the perceived quality (Q) as estimated by
the Original WR model can be unbounded, we have used a
linear fitting function α+ βx to fit the Q values to the MOS



Figure 1: MOS vs Angular resolution (cpd) plot for the six datasets. The fitted line is the perceived picture quality (Q) scores as predicted
by the Original WR model. The colours of the markers in each plot represents a particular video sequence.

scores (1-5). The global fitting parameters, obtained for all six
datasets combined are α = −1.0739, β = 0.67015. The fit of
the Original WR model to six different datasets is shown in
Figure 1. As can be observed, despite the fact that these six
datasets capture reproductions with different viewing angles
(ϕ), the shape of the original WR model does not change
much. This is due to the fact that the original model was only
verified in the range of ϕ = [2.526 to 18.026] and we hence
have to clip ϕ in model computations. Still, we observe that
the fit to newer datasets is quite good, with the “goodness of
fit” scores in terms of RMSE for each dataset summarized in
Table II.

III. GENERALIZED WR MODEL AND ITS VALIDATION

As briefly mentioned earlier, one of the major limitations of
the WR model is that it works well only for a narrow range
of resolutions and viewing angles, and does not scale well
outside the test range. Extrapolating the WR model beyond the
operating range of angular resolution (µ = [2.7, 38] cpd), one
can observe that the MOS scores predicted by the WR model
may turn negative at low resolutions or decay with resolutions
beyond 40 cpd. Additionally, with an increase in viewing
angle, the values of perceived picture quality, Q increases
unbounded, which (according to our knowledge of human
visual system) should rather saturate at higher resolutions and
decay to 0 when resolutions are low. To overcome the above-
mentioned shortcomings, we next propose a modified version
of the WR model, offering due saturations at broader ranges
of parameter values. We first note that the WR model works

with logarithms of ϕ and µ as main variables. This means
that their weighted sum translates to a geometric (or power)
weighted average under the logarithm:

Q(ϕ, µ) = λ log(f(ϕ)) + η log(g(µ)) = log(f(ϕ)λg(µ)η)
(5)

where f(.) and g(.) are certain functions.
When either of the variables is approaching 0, the power

average turns to 0 as well. This makes a lot of sense in the
context of the problem: if either picture angle ϕ or angular res-
olution µ is approaching 0, the same should happen to overall
quality expression. However, the subsequent application of the
logarithm turns this 0 to −∞. Also, in the Original WR model
with an increase in viewing angle, the values of perceived
picture quality, Q increases unbounded. In order to address
these issues, we introduce α and β parameters,

Q(ϕ, µ) ≈ log
(
α+ β

(
f(ϕ)λg(µ)η

))
(6)

where α ≥ 1.
We next introduce saturations. For this purpose, we will use

Lp norm with negative power parameter:

f
(
x, xs, k

)
=
(
x−k+x−k

s

)− 1
k

= xs

(
1+
( x

xs

)−k
)− 1

k

(7)

For example, with k = 1, this turns into a harmonic mean
between x and xs, and when k→∞, it turns into min(x, xs).



Figure 2: MOS vs Angular resolution (cpd) plot for the six datasets. The fitted line is the perceived picture quality (Q) scores as predicted
by the GWR model. The colours of the markers in each plot represents a particular video sequence.

By using these techniques and moving everything under the
logarithm, we next arrive at the following, generalized version
of the Westerink & Roufs model:

Q(ϕ, µ) = log

(
α+ β

(
1 +

(
ϕ
ϕs

)−k
)− γ

k
(
1 +

(
µ
µs

)−l
)− δ

l

)
(8)

where γ, δ, k, l, ϕs and µs are model parameters controlling
the behaviour with respect to viewing angle and angular
resolution. This model will henceforth be referred to as GWR
model.

A. Validation of the GWR Model on New Datasets

Similar to the Original WR model, we validate the pro-
posed generalized model to the newer datasets. By fitting the
Generalized model to the six modern datasets combined we
obtain the model parameters as: α= 2.72, β=145.69, γ = 1.55,
δ=2.12, k=6.01, l=2.11, ϕs=35.0, and µs=16.93. Figure 2
shows the individual fitting of the perceived picture quality
(Q) as estimated using the GWR model on all six datasets.
One can observe that the model fits quite nicely to all datasets
allowing for a more graceful saturation in extreme regions
(very high/low angular resolution values). Table II shows the
“goodness of fit” in terms of RMSE scores for the Original
and GWR model for the six datasets. It can be seen that
the GWR model results in a better fit than the Original
WR model, especially when comparing the RMSE scores for
smaller screen devices such as Mobile and Tablet.

TABLE II: “GOODNESS OF FIT” OF ORIGINAL AND
GENERALIZED WR MODEL TO THE SIX DIFFERENT DATASETS IN

TERMS OF RMSE SCORE.

Dataset Original Generalized
Netflix 0.40 0.40
AVT 0.23 0.24
Gaming 0.28 0.22
ITU-TV 0.21 0.15
ITU-Mobile 0.36 0.23
ITU-Tablet 0.21 0.13
Average 0.28 0.23

IV. TUNING GWR MODEL TO CASES OF HDR CONTENT
AND DIFFERENT UPSAMPLING ALGORITHMS

So far we limited our analysis and validation of the models
to SDR, 8-bit content using traditional upsampling algorithms
such as bicubic or lanzcos3. However, 10-bit HDR content,
as well as different upsampling algorithms, have different
effects on the subjective scores, with MOS scores often
reaching saturation at lower angular resolutions for AI/ML
based upsampling algorithms as compared to the traditional
algorithms such as Nearest Neighbour or Bicubic. To further
study the effect of such content and upsampling algorithms,
we use the MOS scores from the open-source BVI dataset [20]
consisting of 24 10-bit five-second source reference videos
sequences of 60 fps which were encoded in three different
resolutions (1920×1080, 960×540 and 480×270). The encoded



(a) Bicubic Upsampling. (b) Nearest Neighbour Upsampling. (c) Super Resolution Upsampling.

Figure 3: MOS vs Angular resolution (cpd) plot considering three different scaling from the BVI dataset. Both the custom fit (adapting the
us and l to each individual rescaling filter dataset) and the generic fit (to full BVI dataset) are shown. The colours of the markers in each
plot represents a particular video sequence.

TABLE III: MODEL PARAMETERS, µs AND l OBTAINED FOR THE
GWR MODEL WHEN FITTED SEPARATELY TO EACH BVI

UPSAMPLING ALGORITHM DATASET.

Upsampling Algorithm µs l

Nearest Neighbour (NN) 23.4 2.5
Bi-cubic (BC) 13.93 1.76
Super Resolution (SR) 12.24 2.06

video sequences were upsampled to the native resolution
(2160p) using three different upsampling algorithms: BiCubic
(BC), Nearest Neighbour (NN) and Super Resolution (SR)
and then viewed on a display measuring 65.4 × 36.8 cm
of BT.2020 colour space (full range) at a viewing distance
of 1.5H. Using the (default) model parameters obtained by
fitting the proposed GWR model to the six datasets earlier,
we noticed that the fit is not that good. Hence, using all MOS
scores from the BVI dataset, we allowed different values of
α and β, as well as added a common scale factor, ϵ for γ
and δ. By refitting, we obtain the new parameter values as:
α = 2.72, β = 106.91, ϵ = 1.08, γ = 1.55ϵ, δ = 2.12ϵ. We
observed that these changes only affect the overall scale of the
model, but not its dependency on parameters ϕ and µ. Hence
more customized fit to each rescaling method is required.

We next fit the GWR model to BC, SR, and NN subsets of
the BVI dataset corresponding to the upsampling method used
(henceforth, BVI (BC), BVI (SR) and BVI (NN) respectively)
by allowing only parameters µs and l to vary (since they
control the model behaviour wrt µ), while using default values
of all other parameters. The fit values of µs and l obtained for
each upsampling algorithm are summarized in Table III.

Figure 3 shows the plot of MOS vs angular resolution (µ)
for the BVI dataset for both the generic fit (“BVI Fit All”)
to all of the BVI dataset as well as the customized fit to
each upsampling algorithm with new fitting parameters (µs)
and l) (“BVI Custom Fit”). It can be observed that with the
new µs and l values, a much better fit is achieved. Figure 3
also shows a line at MOS = 4, establishing a baseline that
we could use for comparison. For example, one might be

interested in understanding the differences in the required
angular resolutions of the content to achieve “good” MOS
score (for example, MOS=4) by the viewers? We observe that
fit to BVI (BC), BVI (SR) and BVI (NN) datasets hits MOS=4
at µ = 16.6, 12.8 and 21.9 respectively. This can be used to
compute relative savings in “encoding resolutions” that can
be achieved by SR upsampling techniques as compared to
the traditional upsampling at different quality levels or in the
design of optimal encoding ladders.

V. APPLICATIONS

A. Adaptive Video Streaming

In adaptive streaming, the players switch renditions based
on the available network bandwidth. Such adaptation allows
continuous playback and prevents buffering. However, as dis-
cussed in [4], in the case of streaming videos embedded in web
pages, the sizes of such embedded videos, or equivalently, the
stretch factors of browser windows, become additional factors
influencing the stream selection logic.

In such situations, web players typically select rendition
with the nearest available resolution to match page viewport
size. Such logic is suboptimal. A more advanced rendition
selection logic should also consider the form factor of the
device, dynamic range, and the upsampling method used, as
they all influence QoE [21]. In this context, the proposed
generalization of the WR metric could be used as a tool
for driving optimal rendition choices by considering all such
parameters. Our upcoming publication [21] offers additional
details about the design of such rendition selection algorithms.

B. (Adaptive) Video Conferencing

Like web-streaming, video conferencing applications such
as Skype, Google Meet, or Zoom also commonly present
videos on devices with different form factors and different
positions of video windows on the screen. They also dy-
namically choose video resolution for encoding and delivery
to each screen. The proposed model can be used to guide
such decisions optimally by accounting for the receiving



device form factor, video window resolution, and quality of
upsampling algorithms.

C. Adaptive Resolution Codecs

Some new codecs, such as VVC [22] allow dynamic reso-
lution changes of the encoded video to achieve better quality-
bitrate tradeoffs for a specific reproduction environment (e.g.
ITU-R BT.500 [23]). The proposed model can help in guid-
ing the resolution-based decisions in encoders utilizing such
features of compression standards.

D. Clients using advanced upscaling algorithms

In Section IV we presented how the proposed model can
be re-tuned to take into account more advanced upscaling
algorithms such as super-resolution, implemented at the client
side. Such a metric that can take into account client post-
processing capabilities such as more advanced upsampling on
perceived quality, can potentially allow for the design of more
network-friendly clients (requiring less bandwidth) or for the
system to deliver a better overall quality of experience.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented and validated the Westerink and
Roufs model [8] using six recent open-source datasets. We
observed that the original WR model performs reasonably well
despite its limitations. We also proposed an extension of the
original WR model allowing for graceful saturations at the
extreme values and resulting in a better fit on the datasets.
We also showed that the proposed model allows tuning to
HDR and different and more advanced upsampling algorithms.
We also discussed the possible uses of the proposed model.
They include optimal rendition selection algorithms in ABR
streaming, selection of optimal encoding resolution in adap-
tive video conferencing applications, and implementation of
adaptive-resolution encoders.

In the future, we plan to extend the study by considering
additional datasets, and using different datasets as basis for
training and validation.

Additionally, we plan to use the proposed generalized model
jointly with measures of codec-introduced noise (e.g., PSNR,
SSIM, or VIF)to arrive at a more complete parametric quality
model for QoE assessment in multiscreen systems. Some
preliminary results towards development of such a hybrid
metric have already been reported in [3], [19] and [24].

REFERENCES

[1] “HTTP live streaming, RFC 8216,” https://tools.ietf.org/html/rfc8216,
2019, [Online: accessed 19-March-2022].

[2] “ISO/IEC 23009-1:2019 Information technology — Dynamic adaptive
streaming over HTTP (DASH) — Part 1: Media presentation description
and segment formats,” https://www.iso.org/standard/79329.html, 2019,
[Online: accessed 17-March-2022].

[3] Y. A. Reznik, K. O. Lillevold, and R. Vanam, “Perceptually Optimized
ABR Ladder Generation for Web Streaming,” Electronic Imaging, vol.
2021, no. 3, pp. 75–1–75–11, 2021.

[4] Y. A. Reznik, K. O. Lillevold, A. Jagannath, and X. Li, “Towards
Understanding of the Behavior of Web Streaming,” in 2021 Picture
Coding Symposium (PCS), 2021, pp. 1–5.

[5] N. Barman and M. G. Martini, “QoE modeling for HTTP Adaptive Video
Streaming– A Survey and Open Challenges,” IEEE Access, vol. 7, pp.
30 831–30 859, 2019.
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