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ABSTRACT

We review construction of a Compressed Histogram of Gradients (CHoG) image feature descriptor, and study
quantization problem that arises in its design. We explain our choice of algorithms for solving it, addressing
both complexity and performance aspects. We also study design of algorithms for decoding and matching of
compressed descriptors, and offer several techniques for speeding up these operations.
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1. INTRODUCTION

Mobile phones have evolved into powerful image and video processing devices, equipped with high-resolution
cameras, color displays, and hardware-accelerated graphics. They are also equipped with location sensors, GPS
receivers, and connected to broadband wireless networks allowing fast transmission of information. This enables
a class of applications which use the camera phone to initiate search queries about objects in visual proximity
to the user. Such applications can be used for identifying products, comparison shopping, finding information
about movies, CDs, real estate or products of the visual arts. Google Goggles ,1 Point and Find ,2 and Snaptell3

are examples of recently developed commercial applications. For these applications, a query photo is taken by
a mobile device and compared against previously stored database photos. A set of image feature descriptors is
used to assess the similarity between the query photo and each database photo. This feature set needs to be
robust against geometric and photometric distortions encountered when the user takes the query photo from an
arbitrary viewpoint in an unknown lighting environment.

The size of the data sent over the wireless network needs to be as small as possible to reduce latency and
improve user experience. One approach to the problem is to transmit a JPEG compressed query image over the
network, but this might be prohibitively expensive at low uplink speeds. An alternate approach is to extract
feature descriptors on the phone, compress the descriptors and transmit them over the network as illustrated in
Figure 1. Such an approach has been demonstrated to reduce the amount of transmission data significantly.4, 5

Yet another approach is to perform descriptor extraction and search in a cache of the database stored on a
mobile phone. Such architecture reduces frequency of requests to a remote database, and it was shown to be
most promising for the design of mobile augmented reality applications.6

1.1 Related Prior Work

Scale Invariant Feature Transform (SIFT),7 Speeded Up Robust Features (SURF),8 Gradient Location and
Orientation Histogram (GLOH),9 and Compressed Histograms of Gradients (CHoG)4 are popular feature de-
scriptors proposed in the literature. The review paper by Mikolajczyk et al.9 compares the performance of
several descriptors. This review, however, does not take the bit-rate of descriptors into account.

Low bit-rate feature descriptors are of increasing interest to the computer vision community. Often, feature
vectors are reduced by decreasing the dimensionality of descriptors via Principle Component Analysis (PCA) or
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Figure 1. A mobile CD cover recognition system. The server is located at a remote location. Feature descriptors are
extracted on the mobile-phone and query feature data is sent over the network. Once the CD cover is recognized on the
server, identification data is sent back to the mobile-phone.

Linear Discriminant Analysis (LDA).10–12 V. Chandrasekhar et al.13 study dimensionality reduction and entropy
coding of SIFT and SURF descriptors. Yeo et al.15 and Shakhnarovich et al.16 reduce the bit-rate of descriptors
by using projections on SIFT descriptors to build binary hashes. As part of the MPEG-7 standard, Brasnett
and Bober17 propose a 60-bit feature descriptor, which will also use as a reference.

In our prior work,4, 5 we propose a framework for computing low bit-rate feature descriptors called CHoG.
Gradient histograms are subsequently quantized and compressed using fixed and variable length codes. Original
design of CHoG descriptors4 used Huffman trees for quantization of histograms. In,5 we introduced type-coding
and generalized Lloyd VQ techniques resulting in more efficient solutions of histogram quantization problem.
This paper is an extension of study,5 offering more detailed description of the type-coding scheme, analysis of
its performance, and focusing on the design of fast and memory-efficient algorithms for histogram quantization
and matching.

1.2 Outline

This paper is organized as follows. In Section 2 we give an overview of the design of a compressed histogram
of gradients (CHoG) descriptor. In Section 3 we discuss quantization problem that arises in this design and
explain our choices of algorithms for solving it. In Section 4, we discuss design of fast algorithms for decoding
and matching of our descriptors. In Section 5 we analyze performance of our quantization scheme and feature
descriptor. Conclusions are drawn in Section 6.

2. COMPRESSED HISTOGRAM OF GRADIENTS DESCRIPTOR

In this section we review main steps in the design of a Compressed Histogram of Gradients (CHoG) descriptor.4, 5

2.1 Patch Extraction and Spatial Binning

We start with a canonical patch, extracted around an interest point at the detected scale and orientation. As
suggested by Mikolajczyk and Schmid,9 we model illumination changes to the patch appearance by a simple
affine transformation aI+ b of the pixel intensities, which is compensated by normalizing the mean and standard
deviation of the pixel values of each patch. Local image gradients dx and dy are computed using a centered
derivative filter kernel [−1, 0, 1].

The patch is then divided into several localized spatial cells. In our design, we use a modification of DAISY
configurations proposed in12, 30. In the original design12, the patch is divided in several disjoint localized cells.
In this work, we use overlapping (”soft”) spatial bins, as shown in Figure 2. The soft assignment is made such
that in computing histograms each gradient contributes to multiple spatial bins. We use normalized Gaussian
weights that sum to 1 at each location. A value of σ for the Gaussian that works well is dmin/3, where dmin is the
minimum distance between bin centers in the DAISY configuration. Spatial binning improves the performance
of the descriptor by making it more robust to the interest point localization error.7
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Figure 2. DAISY configurations with K = 9, 13, 17 spatial cells. We use Gaussian-shaped overlapping (soft) binning.
For picture clarity, weighting functions of inner and outer cells are shown without grid covering.
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Figure 3. The joint (dx, dy) gradient distribution (a) over a large number of cells, and (b), its contour plot. The greater
variance in y-axis results from aligning the patches along the most dominant gradient after interest point detection. The
quantization bin constellations VQ-3, VQ-5, VQ-7 and VQ-9 and their associated veronoi cells are shown at the bottom.

2.2 Quantization of Gradients

Our next task is to quantize histograms of gradients in each spatial cell. Let PDx,Dy (dx, dy) be the normalized
joint (x, y)-gradient histogram in each spatial bin. We propose coarsely quantizing the 2D gradient histogram

and capturing the histogram directly into the descriptor. We approximate PDx,Dy (dx, dy) as P̂D̂x,D̂y
(d̂x, d̂y) for

(d̂x, d̂y) ∈ S, where S represents a small number of quantization centroids or bins as shown in Figure 3.

We use histogram binning schemes that exploit the underlying gradient statistics observed in patches extracted
around interest points, as shown in Figure 3. We perform a Vector Quantization (VQ) of the gradient distribution
to a small set of bin centers, S, shown in Figure 3. We call these bin configurations VQ-3, VQ-5, VQ-7 and VQ-9.
Similar to soft spatial binning, we assign each (dx, dy) pair to multiple bin centers with normalized Gaussian
weights. We use σ = qmin/3, where qmin is the minimum distance between centroids in the VQ bin configurations
shown in Figure 3. As we increase the number of bin centers, we obtain a more accurate approximation of the
gradient distribution and the performance of the descriptor improves.4 All soft binning weights are pre-computed
which enables fast computation of the descriptor.



2.3 Second-stage Quantization and Encoding

Our final task is to quantize and encode histograms from spacial cells. The goal is to represent these histograms
using small number of bits while maintaining high precision of their representation. We perform independent
quantization of histograms in each cell. The resulting codebook indices are then encoded using fixed-length or
arithmetic codes. The final bitstream of the feature descriptor is formed as a concatenation of codes representative
of histograms in each cell.

The quantization process that we employ at the this stage is explained in greater detail in the next section.
It is one of the most computationally intensive steps in the descriptor extraction process, requiring us to pay
attention to complexity in our choice of algorithms.

3. QUANTIZATION OF HISTOGRAMS

We start by offering a simple mathematical description of the problem that we encounter in the final stage of
design of CHoG descriptors.

3.1 Description of the Problem

Let m represent the number of histogram bins. By Ωm we denote a set of all possible m-ary probability
distributions:

Ωm =
{
[ω1, . . . , ωm] ∈ R

m
∣∣∣∀i : ωi � 0 ,

∑
i ωi = 1

}
. (1)

This produces a compact subset of Rm−1, commonly known as the unit (m− 1)-simplex .19

Let p ∈ Ωm be an input distribution, and let Q ⊂ Ωm be a set of distributions that we will be able to
reproduce. We will call elements of Q reconstruction points or centers in Ωm. We assume that |Q| < ∞ and that
its elements can be enumerated and encoded. When using fixed-rate encoding the rate becomes R(Q) = �log2 |Q|�
bits. By d (p, q) we denote a distance measure between distributions p, q ∈ Ωm. For example, it can be an r-th
order L-norm:

dr(p, q) = ||p− q||r =

(∑
i

|pi − qi|r
)1/r

, (2)

Kullback-Leibler (KL) distance:

dKL(p, q) = D(p||q) =
∑
i

pi log2
pi
qi

, (3)

or symmetric KL-distance (also known as Jeffrey’s divergence):

dJ(p, q) = D(p||q) +D(q||p) . (4)

In the context of our application, symmetric KL-distance will be of most interest.4

In a simplest form, the problem of quantization of distribution p ∈ Ωm can be understood as task of finding
the set Q : |Q| � 2R, such that the maximal distance to the nearest reconstruction point is minimal:

d∗(Ωm, R) = inf
Q⊂Ωm

|Q|�2R

max
p∈Ωm

min
q∈Q

d(p, q) . (5)

When it is further assumed that distributions p ∈ Ωm are produced by some random process with density
θ over Ωm, the quantization problem can be formulated as minimization of the expected distance to the nearest
reconstruction point:

d̄(Ωm, θ, R) = inf
Q⊂Ωm

|Q|�2R

Ep∈Ωm

p∼θ
min
q∈Q

d(p, q) , (6)



Figure 4. Volume of the probability simplex Ωm (left) and the associated leading factor in asymptotic expression for
quantization error d∗(Ωm, R) (right). Both quantities become smaller as the number of dimensions m increases.

Both settings are standard in quantization theory.20 The distinctive part of our problem is a particular shape
of set Ωm that we need to quantize. For example, it can be shown (cf.19), that the volume of unit m− 1-simplex
Ωm is rapidly decaying with m:

Vol(Ωm) =
ak

k!

√
k + 1

2k

∣∣∣∣∣k=m−1
a=

√
2

=

√
m

(m− 1)!
. (7)

This suggests, that in high dimensions, quantization error (5) or (6) achievable in our case should be much
smaller compared to one resulting from solving quantization problem for the unit cube [0, 1]m−1. The precise
amount of reduction of quantization error is actually

m−1
√
Vol(Ωm) = m−1

√ √
m

(m− 1)!
=

e

m
+O

(
1

m2

)
(8)

which appears as a factor in achievable (high-rate regime) characteristic of the quantizer [20, Theorem 10.7]:

d∗r(Ωm, R) ∼ Cm−1,r
m−1
√
Vol(Ωm) 2−

R
m−1 , (9)

where Cm−1,r are some known constants, for example, Cm−1,∞ = 1
2 (for any m), C2,1 = 1√

2
, C2,2 =

√
2

3
√
3
, etc.

In other words, coding of distributions (histograms of gradients of image features) has some interesting
properties and advantages from quantization-theory point of view. More details on this subject can be found
in.25

We next describe design of a practical algorithm for solving histogram quantization problem. In order to be
suitable for use in mobile devices (mobile phones, cameras, etc.) such algorithm should require small amount of
memory and have low computational complexity.

3.2 Choice of Codebook

The need for small memory footprint forces us to focus on algorithms that do not explicitly store the set of
reconstruction points (or codebook) Q. Instead, such codebook must have some regular structure, allowing
on-the-fly computation of reconstruction points.

Specifically, codebook Q must contain a set of m-ary distributions q = [q1, . . . , qm]. In our design, we define
values qi as fractions qi = ki/n, where n, and ki (i = 1, . . . ,m) are some integers. This leads to the following set
of distributions:

Qn =
{
[q1, . . . , qm] ∈ Q

m
∣∣∣∀i : qi = ki

n , ki � 0,
∑

i ki = n
}
, (10)

The parameter n controls the density and the number of points in Qn. We show several examples of such sets
in m = 3 dimensions in Figure 5.



Figure 5. Examples of type lattices and their Voronoi partitions in 3 dimensions (m = 3, n = 1, 2, 3). Green triangle shows
the body of probability simplex Ωm that we need to quantize.

We note that points q ∈ Qn coincide with the definition of types in universal source coding theory.21 Due to
this analogy, we will refer to points q ∈ Qn as types , and will call the entire set Qn a type lattice.

From the point of view of lattice theory, the set Qn can be understood as a bounded subset of so-called
lattice An.

23 It is not the most dense lattice available (e.g. if compared to E8 or Λ24 lattices23 in dimensions 8
and 24), and as such it is rarely used in practice. However, in the context of our problem, this lattice becomes
very convenient: it is remarkably easy to construct, and it can be easily bounded to fill the simplex-shaped subset
of Rm−1 that we need to quantize.

3.3 Finding Nearest Reconstruction Point

In order to find the nearest type in Qn we use the following algorithm∗:

Algorithm 1. Given p, n, find parameters k1, . . . , km of the nearest point q =
[
k1

n , . . . , km

n

]
:

1. Compute values (i = 1, . . . ,m)
k′i =

⌊
npi +

1
2

⌋
, n′ =

∑
i k

′
i .

2. If n′ = n the nearest type is given by: ki = k′i. Otherwise, compute errors

δi = k′i − npi ,

and sort them such that
− 1

2 � δj1 � δj2 � . . . � δjm � 1
2 ,

3. Let Δ = n′ − n. If Δ > 0 then decrement Δ values k′i with largest errors

kji =

[
k′ji j = i, . . . ,m−Δ− 1 ,
k′ji − 1 i = m−Δ, . . . ,m ,

otherwise, if Δ < 0 increment |Δ| values k′i with smallest errors

kji =

[
k′ji + 1 i = 1, . . . , |Δ| ,
k′ji i = |Δ|+ 1, . . . ,m .

4. Return quantities k1, . . . , km.

∗This algorithm is similar in concept to Conway and Sloane’s quantizer for lattice An.
24 However, our algorithm is

much simpler, and produces points that are naturally constrained to the unit simplex. No boundary checks are needed.



Figure 6. Typical distribution of values Δ in Algorithm 1. Observed with m = 9 after computing descriptors for patches
in Liberty dataset.12 With larger sets we expect this distribution to be more symmetric.

The most complex step in this algorithm is a sorting operation in Step 2. Using traditional fast sorting
procedures, such as quicksort, the result is usually obtained after O(m logm) comparisons. However, in our
situation, we don’t really need to perform full sort: in Step 3 we only need to know |Δ| smallest or largest
elements. Finding them can be accomplished by a much simpler procedure, shown below as Algorithm 2.

Algorithm 2. Given quantities δ1, . . . , δm, find indices j1, . . . , jΔ of their Δ smallest elements: δj1 � . . . �
δjΔ � maxj /∈{j1,...,jΔ} δj:

1. Set ji = i, i = 1, . . . ,m.

2. For k = 1, . . . ,Δ do the following

(a) find i such that δji = min
{
δjk+1

, . . . , δjm
}
;

(b) swap elements jk and ji.

3. Return indices j1, . . . , jΔ

This algorithm requires O(m|Δ|) comparisons. This is not the fastest selection algorithm available, but it
works well when parameter Δ is small. This is precisely the case in our situation. We show typical distribution
of quantities Δ in Figure 6.

3.4 Enumeration and Encoding

The number of types in lattice Qn depends on the parameter n. It is essentially the number of partitions of n
into m terms k1 + . . .+ km = n:

|Qn| =
(
n+m− 1

m− 1

)
. (11)

In order to encode a type with parameters k1, . . . , km, we first need to obtain its unique index ξ(k1, . . . , km).
We propose to compute it as follows:

ξ(k1, . . . , km) =
m−2∑
j=1

kj−1∑
i=0

(
n− i−∑j−1

�=1 k� +m− j − 1

m− j − 1

)
+ kn−1 . (12)

This formula follows by induction (starting with m = 2, 3, etc.), and it implements lexicographic enumeration of
types. For example:

ξ(0, 0, . . . , 0, n) = 0 ,

ξ(0, 0, . . . , 1, n− 1) = 1 ,

. . .

ξ(n, 0, . . . , 0, 0) =
(
n+m−1
m−1

)− 1 .



With precomputed array of binomial coefficients, the computation of an index by using this formula requires
O(n) operations. The amount of memory needed to store such an array of coefficients is O(nm) words. This
is much smaller compared to O(m |Qn|) = O (nm) words needed to store the entire codebook. We note, that in
the context of our application, we typically use lattices with n = O(m).

Once index is computed, it is transmitted either by using fixed rate codes (direct binary representation of an
index) or by using arithmetic codes. In both cases, the achievable rate satisfies:

R(n) �
⌈
log2

(
n+m−1
m−1

)⌉
. (13)

3.5 Adding Bias

In our final implementation of type quantizer we have found it useful to introduce slight shift of reconstruction
points towards the middle of the simplex. This is done with the help of the bias parameter β > 0:

q′i =
ki + β

n+ βm
, i = 1, . . . ,m. (14)

In universal coding or statistics the corresponding quantity is usually called a prior .22 It is normally used to
improve robustness of probability estimators.

The value of parameter β that we found to be working well in the design of feature descriptors is computed
as follows

β = β0
n

n0

where n0 is the total number of samples in the original (non-quantized) histogram, and β0 = 1/2 is the prior
added in conversion of original histogram frequencies k0,i to probabilities:

p′i =
k0,i + β0

n0 + β0m
, i = 1, . . . ,m.

This modification comes as gratis in terms of descriptor extraction complexity: we simply use Algorithm 1
to quantize unbiased input distribution pi = k0,i/n0 to a point q in type lattice Qn. As readily verified, this
produces correct parameters k1, . . . , km of a biased type (14).

4. FAST DECODING AND MATCHING

Recall, that in its final form, the compressed histogram of gradients descriptor is a sequence of codewords

Ξ = f (ξ1) . . . f (ξK) , (15)

where K is the number of spatial bins, ξi ∈ {0, . . . , |Qn| − 1} are indices of compressed distributions (types) in
lattice Qn, and f : {0, . . . , |Qn| − 1} → {0, 1}∗ is an encoding function.

When we use fixed-rate encoding, the function f(.) simply outputs binary representations of indices ξi. Each
codeword contains R = �log |Qn|� bits. No particular decoding logic is needed in this case. When f(.) denotes
arithmetic encoding function, we follow the standard arithmetic decoding process to retrieve indices.

We next focus on conversion of type indices to distributions and computing distances between them. Let ξ1i
and ξ2i denote type indices corresponding to i-th spatial cells of two feature descriptors Ξ1 and Ξ2. For example,
let first descriptor be extracted from a query image, and the second descriptor extracted from an image in the
database. In order to compute a distance between descriptors we now need to decode indices, convert them to
distributions (i = 1, . . . ,K):

ξ1i �
{
k1i,1, . . . , k

1
i,m

}
� q1i =

[
k1
i,1+βi

ni+mβi
, . . . ,

k1
i,m+βi

ni+mβi

]
,

ξ2i �
{
k2i,1, . . . , k

2
i,m

}
� q2i =

[
k2
i,1+βi

ni+mβi
, . . . ,

k2
i,m+βi

ni+mβi

]
,



Figure 7. Pinsker-type inequality (19) in 2 dimensions. Symmetric KL-distance dJ(p, q) (shown in color) can be bounded
by a function of d1(p, q) (shown in gray). This bound is tight when p → q or p → 1− q.

and then compute a distance:

D(Ξ1,Ξ2) =
K∑
i=1

d(q1i , q
2
i ) . (16)

As noted in,4, 5 most of these operations can be avoided by precomputing a mapping:

dξ : {0, . . . , |Qn| − 1} × {0, . . . , |Qn| − 1} → R+

associating each pair of indices
(
ξ1i , ξ

2
i

)
with a distance d(q1i , q

2
i ) between their reconstructed distributions. This

enables compressed-domain matching of histogram-based descriptors.4, 5

The size of the lookup table for compressed-domain matching is

M = |Qn|2 =

(
n+m− 1

m− 1

)2

.

When we use type lattices with parameter n = O(m), the number of entries in such table becomes approximately:

M ∼
(
(1 + α)

1+α

αα

)2m

,

where α = n/m. With small m and n this becomes a viable and remarkably fast solution.

When m or n is large, and/or matching needs to be done on a platform with very limited memory, a different
technique is needed. Form Section 3.4 we know that decoding of type parameters (mapping ξ1i �

{
k11 , . . . , k

1
m

}
)

can be done quickly by using formula (12). With precomputed binomial coefficients such process takes only O(n)
comparisons and additions. The computation of advanced distance measures, such as Kullback-Leibler or Jeffrey
distances can be greatly simplified by using so-called generalized Pinsker inequalities :26–28

dKL � 1

2
d 2
1 , (17)

dKL � log
2 + d1
2− d1

− 2d1
2 + d1

, (18)

dJ � d1 log
2 + d1
2− d1

. (19)

where dKL denotes KL-distance (3), dJ is a symmetric form of KL-distance (4), and d1 is an L1-norm (also known
as variational distance in this context26). We provide illustration of the last bound (19) in Figure 7.



The computation of the variational distance:

d1(q
1
i , q

2
i ) =

m∑
j=1

|q1i,j − q2i,j | ,

can also be simplified. For example, when q1i and q2i are obtained by using the same lattice parameter ni and
prior βi, we just need to compute:

d1(q
1
i , q

2
i ) =

1

ni +mβi

m∑
j=1

|k1i,j − k2i,j | .

This formula operates directly with type coordinates k1i,1, . . . , k
1
i,m, eliminating the need in conversion to proba-

bilities, and allowing most operations to be performed in integer domain.

In summary, several options are available for fast decoding and matching of compressed histogram-based
descriptors. Decoding and matching complexity exhibits at most linear (O(K n)) dependence on the number of
spatial bins (K) and lattice parameter (n).

5. PERFORMANCE ANALYSIS

In this section we study performance of our quantization technique and histogram-based descriptors. We start
with few results that can be produced analytically, and follow with experimental results verifying performance
of our descriptors when working with real databases of images.

5.1 Analysis of Type Coding

We first note that vertices of Voronoi cells (or holes) in type lattice Qm are located in positions

q∗i = q + vi, q ∈ Qn, i = 1, . . . ,m− 1 ,

where q ∈ Qn are lattice points and vi are vectors given by

vi =
1
n

[
m−i
m , . . . , m−i

m︸ ︷︷ ︸
i times

, −i
m , . . . , −i

m︸ ︷︷ ︸
m−i times

]
.

This follows from analysis of geometry of Voronoi cells in lattice An (cf. [23, Chapter 21]).

The covering radius of type lattice Qn can also be easily computed (as L2-norm of vectors vi):

ρ2 = max
p∈Ωm

min
q∈Qn

d2(p, q) =
1
n

√
a(m−a)

m , (20)

where a = �m/2�. For L∞ and L1 norms we obtain:

ρ∞ = max
p∈Ωm

min
q∈Qn

d∞(p, q) � 1
n

(
1− 1

m

)
, (21)

ρ1 = max
p∈Ωm

min
q∈Qn

d1(p, q) � 1
n

2a(m−a)
m . (22)

We now establish connection with the coding rate of our quantizer (13):

R = �log2 |Qn|� = (m− 1) log2 n− log2 (m− 1)! +O
(
1
n

)
.

This implies that (with R → ∞):

n ∼ 2
R

m−1
m−1
√
(m− 1)! ,
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Figure 8. Figure (a) shows the ROC curves of a type coded CHoG descriptor with and without priors. The performance
of the descriptor is better with the scaled prior. Figure (b) shows ROC curves for compressing distributions with type
coding scheme for DAISY-13 and VQ5 configuration for Liberty data set. Figure (c) shows ROC curves for compressing
distributions with Type coding scheme for DAISY-13 and VQ7 configuration for Liberty data set. Larger number of
gradient bins leads to better ROC performance.

and consequently (for example, by using (21)) that:

d∗∞[Qn](Ωm, R) = min
n:|Qn|�2R

max
p∈Ωm

min
q∈Qn

d∞(p, q) � 2−
R

m−1
1− 1

m
m−1
√
(m− 1)!

. (23)

Similar estimates are easily produced for other norms as well.

We observe, that the decay rate of 2−
R

m−1 in (23) is exactly the same as predicted by the quantization
theory (9). The only difference is in a leading constant factor. Thus, for L∞ norm the factor in (9) becomes

1

2
m−1

√√
m =

1

2
+O

(
logm

m

)
.

When using type lattice Qn this factor is
1

2
� 1− 1

m
< 1,

which starts with 1
2 when m = 2. This suggests that even when measured by the value of leading constant our

algorithm comes close to the optimal performance.

Next, we evaluate performance of our compressed descriptors in the context of an image retrieval application.

5.2 Performance of Histogram-Based Image Feature Descriptors

To experimentally evaluate performance of our descriptors, we use the two data sets provided by Winder and
Brown in their most recent work,12 Notre Dame and Liberty. We extract descriptors from pixel patches around
each interest point. For algorithms that require training, we use use the Notre Dame data set, while we perform
our testing on the Liberty set.

We use the methodology proposed in Winder and Brown12 for evaluating descriptors. We compute a distance
between each matching and non-matching pair of descriptors. We use symmetric Kullback Leibler (KL) distance
as the distance measure. From these distances, we compute a Receiver Operating Characteristic (ROC) curve
which plots correct match fraction against incorrect match fraction. We compare our low bitrate descriptors to
the well-known SIFT descriptor.7
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Figure 9. Comparison of EER versus bit-rate for all compression schemes for the Liberty data set. Better performance is
indicated by a lower EER. We observe that CHoG outperforms all other schemes.

5.2.1 ROC Performance of CHoG Descriptor

We produce several ROC curves for our descriptors in Figure 8. Figure 8(a) illustrates the advantage of using
biased types (14). These results were computed for DAISY-13, VQ-7 configuration, and with setting type
parameter n = 4, and with β0 = 1/2. Figure 8(b) shows performance of the type compression scheme for the
DAISY-13, VQ-5 configuration. The bitrate in Figure 8(b) is varied by changing type quantization parameter n.
For this configuration, the descriptor at 59 bits performs on par with SIFT at 1024 bits. Figure 8(c) shows ROC
curves for compressing distributions with Type coding scheme for DAISY-13 and VQ-7 configuration for Liberty
data set. It shows that larger number of gradient bins leads to better ROC performance, but at the expense of
higher bitrates.

5.2.2 Comparison with Alternative Compression Schemes

In this section, we compare the performance of the different histogram compression schemes. For a fair comparison
at the same bit rate, we consider the Equal Error Rate (EER) point on the different ROC curves for each scheme.
The EER point is defined as the point on the ROC curve where the miss rate (1− correct match rate) and the
incorrect match rate are equal. Figure 9 presents our EER results.

For more detailed descriptions of each scheme, please refer to.4, 5

• CHoG with Huffman tree coding. Instead of type-coding, this scheme quantizes distributions by construct-
ing a Huffman tree, and then transmitting an index of this tree in a codebook of all possible Huffman trees
for m-ary distributions. This idea was first used in the original design of CHoG descriptor.4

• CHoG with generalized Lloyd coding. Instead of type-coding, this scheme uses iterative Entropy Constrained
Vector Quantization (ECVQ) procedure to produce a codebook and entropy codes that are optimally
trained for a given image database.5 This design is significantly more complex than type-coding.

• Patch Compression. We compress 32×32 pixel patches with DA-PBT (Direction Adaptive Partition Block
Transform), which is shown to perform better than JPEG.14 We compute a 128-dimensional 1024-bit SIFT
descriptor on the reconstructed patch.

• Random Projections. Yeo et al.15 propose the use of quantized random projections to build binary hashes
from SIFT descriptors. We also compare CHoG to a machine learning algorithm called Boosting Similarity
Sensitive Coding (Boost SSC)16 which trains binary codes on SIFT descriptors to reflect patch similarity.
Hamming distance between hashes is used as the distance measure.

• Transform Coding. Transform coding of SURF and SIFT descriptors was proposed by Chandrasekhar et
al.13 The compression pipeline first applies a Karhunen-Lòeve Transform (KLT) to decorrelate the different
dimensions of the feature descriptor. This is followed by equal step size quantization of each dimension,
and entropy coding with an arithmetic coder. We observe that CHoG descriptors outperform SIFT and
SURF transform coding schemes at all bitrates.



• Tree Structured Vector Quantization. Here, we quantize SIFT descriptors by using a Vocabulary Tree32

containing 1 million leaf nodes, thus requiring 20 bits per descriptor.

• MPEG-7 Image Signatures. As part of the MPEG-7 standard, Brasnett and Bober17 propose a 60 bit
signature for patches extracted around DoG interest points and Harris corners. The proposed method
uses the Trace transform to compute a 1D representation of the image, from which a binary string is
extracted using a Fourier transform. The descriptor is robust to simple image modifications like scaling,
rotation, cropping and compression, but it is not robust to changes in perspective and other photometric
distortions.33

Based on EER results presented Figure 9 we can observe that:

• CHoG descriptors designed with proposed type-quantization scheme perform very well, approaching best
EER performance at rate of just 60 bits/descriptor,

• CHoG with Lloyd ECVQ quantizer, offers comparable or marginally better performance while being much
more complex, and

• the other schemes perform significantly worse than CHoG in terms of EER vs. bitrate characteristics.

6. CONCLUSIONS

We have reviewed construction of a Compressed Histogram of Gradients (CHoG) image feature descriptor, and
explained histogram quantization problem that arises in its design. We explained our choice of algorithms
for solving it, focusing on both complexity and performance aspects. We also studied design of algorithms for
decoding and matching of compressed descriptors, and offered several techniques for speeding up these operations.
Proposed algorithms are memory-efficient, require small number of operations to execute, and well suitable for
use in mobile phones, cameras, and other portable devices. Performance of CHoG descriptors with proposed
quantization scheme is also studied. It is shown that CHoG descriptors achieve excellent equal-error-rate (EER)
performance are very low data rates, significantly outperforming other known techniques.
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