
IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 1

Mobile Visual Search
Bernd Girod,Fellow, IEEE,Vijay Chandrasekhar,Member, IEEE,David M Chen,Member, IEEE,

Ngai-Man Cheung,Member, IEEE,Radek Grzeszczuk,Member, IEEE,Yuriy Reznik, Senior Member, IEEE,
Gabriel Takacs,Member, IEEE,Sam S Tsai,Member, IEEE,Ramakrishna Vedantham,Member, IEEE,

MOBILE phones have evolved into powerful image
and video processing devices, equipped with high-

resolution cameras, color displays, and hardware-accelerated
graphics. They are increasingly also equipped with GPS, and
connected to broadband wireless networks. All this enables
a new class of applications which use the camera phone to
initiate search queries about objects in visual proximity to the
user (Fig 1). Such applications can be used, e.g., for iden-
tifying products, comparison shopping, finding information
about movies, CDs, real estate, print media or artworks. First
deployments of such systems include Google Goggles [1],
Nokia Point and Find [2], Kooaba [3], Ricoh iCandy [4], [5],
[6] and Amazon Snaptell [7].

Mobile image retrieval applications pose a unique set of
challenges. What part of the processing should be performed
on the mobile client, and what part is better carried out at the
server? On the one hand, transmitting a JPEG image could
take tens of seconds over a slow wireless link. On the other
hand, extraction of salient image features is now possible on
mobile devices in seconds or less. There are several possible
client-server architectures:

• The mobile client transmits a query image to the server.
The image retrieval algorithms run entirely on the server,
including an analysis of the query image.

• The mobile client processes the query image, extracts
features and transmits feature data. The image retrieval
algorithms run on the server using the feature data as
query.

• The mobile client downloads data from the server, and
all image matching is performed on the device.

One could also imagine a hybrid of the approaches men-
tioned above. When the database is small, it can stored on the
phone and image retrieval algorithms can be run locally [8].
When the database is large, it has to be placed on a remote
server and the retrieval algorithms are run remotely.

In each case, the retrieval framework has to work within
stringent memory, computation, power and bandwidth con-
straints of the mobile device. The size of the data transmitted
over the network needs to be as small as possible to reduce
network latency and improve user experience. The server
latency has to be low as we scale to large databases. Further,
the retrieval system needs to be robust to low quality camera-
phone images. This paper reviews recent advances in content-
based image retrieval with a focus on mobile applications.

Bernd Girod, Vijay Chandrasekhar, David Chen, Ngai-Man Cheung, Gabriel
Takacs and Sam Tsai are with Stanford University, CA.

Radek Grzeszczuk and Ramakrishna Vedantham are with Nokia Research
Center, Palo Alto, CA.

Yuriy Reznik is with Qualcomm Inc., San Diego, CA.

Fig. 1. Example of a mobile visual search application. The userpoints his
camera phone at an object and obtains relevant information about it.

Fig. 2. Pipeline for image retrieval. Local features are extracted from the
query image. Feature Matching finds a small set of images in the database
that have many features in common with the query image. The Geometric
Verification step rejects all matches with feature locationsthat cannot be
plausibly explained by a change in viewing position.

We first review large-scale image retrieval highlighting recent
progress in mobile visual search. As an example, we then
present the Stanford Product Search system, a low latency
interactive visual search system. Several sidebars invitethe
interested reader to dig deeper into the underlying algorithms.

ROBUST MOBILE IMAGE RECOGNITION

The most successful algorithms for content-based image
retrieval today use an approach that is referred to as “Bag
of Features” (BoF) or “Bag of Words” (BoW). The BoW
idea is borrowed from text retrieval. To find a particular text
document, such as a web page, it is sufficient to use a few
well-chosen words. In the database, the document itself can
likewise be represented by a “bag” of salient words, regardless
of where these words appear in the text. For images, robust
local features take the analogous role of “visual words.” Like
text retrieval, BoF image retrieval does not consider where
in the image the features occur, at least in the initial stages

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 2

Fig. 3. Illustration of feature extraction. We first compute interest points (e.g., corners, blobs) at different scales.The patches at different scales are oriented
along the dominant gradient. Feature extraction is followedby computation of feature descriptors that capture the salient characteristics of the image around
the interest point. Here, we illustrate how the CHoG descriptor is computed. The scaled and oriented canonical patches are divided into localized spatial bins,
which gives robustness to interest point localization error. The distribution of gradients in each spatial bin is compressed to obtain a very compact description
of the patch.

of the retrieval pipeline. However, the variability of features
extracted from different images of the same object makes the
problem much more challenging.

A typical pipeline for image retrieval is shown in Fig. 2.
First, local features are extracted from the query image. The
set of image features is used to assess the similarity between
query and database images. For mobile applications, individual
features must be robust against geometric and photometric dis-
tortions encountered when the user takes the query photo from
a different viewpoint, and with different lighting, compared to
the corresponding database image.

Next, the query features are quantized [9], [10], [11], [12].
The partitioning into quantization cells is precomputed for
the database, and each quantization cell is associated with
a list of database images in which the quantized feature
vector somewhere appears. This “inverted file” circumvents
a pair-wise comparison of each query feature vector with all
the feature vectors in the database and is the key to very
fast retrieval. Based on the number of features they have
in common with the query image, a short list of potentially
similar images is selected from the database.

Finally, a geometric verification step is applied to the most
similar matches in the database. Geometric Verification finds
a coherent spatial pattern between features of the query image
and the features of the candidate database image to ensure that
the match is plausible.

For mobile visual search, there are considerable challenges
to provide users with an interactive experience. Current de-
ployed systems typically transmit an image from the client
to the server, which might require tens of seconds. As we
scale to large databases, the inverted file index becomes very
large, with memory swapping operations slowing down the
Feature Matching stage. Further, the Geometric Verification
step is computationally expensive and thus increases response
time. We discuss each block of the retrieval pipeline in the
following, focusing on how to meet the challenges of mobile
visual search.

Feature Extraction

Interest Point Detection:Feature extraction typically starts
by finding salient interest points in the image. For robust image
matching, we desire interest points to be repeatable under
perspective transformations (or, at least, scale changes,rotation
and translation) and real-world lighting variations. An example
of feature extraction is illustrated in Fig. 3. To achieve scale
invariance, interest points are typically computed at multiple
scales using an image pyramid [13]. To achieve rotation
invariance, the patch around each interest point is canonically
oriented in the direction of the dominant gradient. Illumination
changes are compensated by normalizing the mean and the
standard deviation of the pixels of the gray values within each
patch [14].

Numerous interest point detectors have been proposed in the
literature. Harris Corners [15], SIFT Difference-of-Gaussian
(DoG) [13] keypoints, Maximally Stable Extremal Regions
(MSER) [16], Hessian Affine [14], FAST [17] and Hessian-
blobs [18] are some examples. The different interest point
detectors provide different trade-offs in repeatability and com-
plexity. E.g., the SIFT DoG points are slow to compute, but
highly repeatable, while the FAST corner detector is extremely
fast but offers lower repeatability. In [19], Mikolajczyk et
al. compare different interest point detectors in a common
framework.

The Stanford Product Search system can perform feature
extraction and compression on the client, to reduce system
latency. Current generation smart phones have limited compute
power, typically only a tenth of what a desktop PC provides.
We require interest points that are fast to compute and highly
repeatable. We choose the Hessian-blob detector sped up
with integral images [18] which provides a good trade-off of
repeatability and complexity. For VGA images, Hessian-blob
interest point detection can be carried out in∼1 second on
current-generation smart phones [20].

Feature Descriptor Computation:After interest point detec-
tion, we compute a “visual word” descriptor on the normalized

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 3

patch. We would like descriptors to be robust to small distor-
tions in scale, orientation and lighting conditions. Also,we
require descriptors to be discriminative, i.e, characteristic of
an image or a small set of images. Descriptors that occur in
almost every image (the equivalent of the word “and” in text
documents) would not be useful for retrieval. Since Lowe’s
paper in 1999 [21], the highly discriminative SIFT descriptor
remains the most popular descriptor in computer vision. Other
examples of feature descriptors are Gradient Location and Ori-
entation Histogram (GLOH) by Mikolajczyk and Schmid [19],
Speeded Up Robust Features (SURF) by Bay et al. [22] and
our own Compressed Histogram of Gradients (CHoG) [23],
[24]. Winder and Brown [25], [26], and Mikolajczyk et al. [19]
evaluate the performance of different descriptors.

As a 128-dimensional descriptor, SIFT descriptor is conven-
tionally stored as 1024 bits (8 bits/dimension). Alas, the size of
SIFT descriptor data from an image is typically larger than the
size of the JPEG compressed image itself. Several compression
schemes have been proposed to reduce the bitrate of SIFT
descriptors. In our recent work [27], we survey different
SIFT compression schemes. They can be broadly categorized
into schemes based on hashing [28], [29], [30], transform
coding [31], [27] and vector quantization [32], [10], [11].
We note that hashing schemes like Locality Sensitive Hashing
(LSH), Similarity Sensitive Coding (SSC) or Spectral Hashing
(SH) do not perform well at low bitrates. Conventional trans-
form coding schemes based on Principal Component Analysis
(PCA) do not work well due to the highly non-Gaussian
statistics of the SIFT descriptor. Vector quantization schemes
based on the Product Quantizer [32] or a Tree Structured
Vector Quantizer [10] are complex and require storage of large
codebooks on the mobile device.

Through our experiments, we came to realize that simply
compressing an ”off-the-shelf” descriptor does not lead to
the best rate-constrained image retrieval performance. One
can do better by designing a descriptor with compression
in mind. Of course, such a descriptor still has to be robust
and highly discriminative. Ideally, it would permit descriptor
comparisons in the compressed domain for speedy feature
matching. To meet all these requirements simultaneously, we
designed the Compressed Histogram of Gradients (CHoG)
descriptor [23], [24]. Descriptors based on the distribution
of gradients within a patch of pixels have been shown to be
highly discriminative [25], [19]. Lowe [13], Bayet al. [22],
Dalal and Triggs [33], Freeman and Roth [34], and Winder
et al. [26] have proposed Histogram of Gradient (HoG) based
descriptors. The CHoG descriptor is designed to work well
at low bitrates (seeBox - CHoG: A Low Bitrate Descriptor).
CHoG achieves the performance of 1024-bit SIFT at less than
60 bits/descriptor. Since CHoG descriptor data are an order
of magnitude smaller than SIFT or JPEG compressed images,
it can be transmitted much faster over slow wireless links.
A small descriptor also helps if the database is stored in the
mobile device. The smaller the descriptor, the more features
can be stored in limited memory.

Box 1 - CHoG: A Low Bitrate Descriptor

CHoG builds upon the principles of HoG descriptors with
the goal of being highly discriminative at low bitrates. Fig. 3
illustrates how CHoG descriptors are computed.

• The patch is divided into spatial bins, which provides
robustness to interest point localization error. We divide
the patch around each interest point into soft log po-
lar spatial bins using DAISY configurations proposed
in [26]. The log polar configuration has been shown to
be more effective than the square grid configuration used
in SIFT [26], [35], [19].

• The joint (dx, dy) gradient histogram in each spatial bin
is captured directly into the descriptor, as illustrated in
Fig. 4. CHoG histogram binning exploits the skew in
gradient statistics that are observed for patches extracted
around interest points.

• CHoG retains the information in each spatial bin as
a distribution. This allows the use of more effective
distance measures like KL divergence, and more impor-
tantly, allow us to apply quantization and compression
schemes that work well for distributions, to produce
compact descriptors.

x−Gradient

y
−

G
ra

d
ie

n
t

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

(a) (b)

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

(VQ-3) (VQ-5) (VQ-7) (VQ-9)

Fig. 4. The joint(dx, dy) gradient distribution (a) over a large number of
cells, and (b), its contour plot. The greater variance iny-axis results from
aligning the patches along the most dominant gradient after interest point
detection. The quantization bin constellations VQ-3, VQ-5, VQ-7 and VQ-9
and their associated Voronoi cells are shown at the bottom.

Typically, 9 to 13 spatial bins and 3 to 9 gradient bins are
chosen resulting in 27 to 117 dimensional descriptors. For
compressing the descriptor, we quantize the gradient histogram
in each spatial bin individually. In [23], [24], we have explored
several novel quantization schemes that work well for com-
pressing distributions: Quantization by Huffman Coding, Type
Coding and optimal Lloyd-Max Vector Quantization (VQ).
Here, we briefly discuss one of the schemes: Type Coding,
which is linear in complexity to the number of histogram bins
and performs close to optimal Lloyd-Max VQ.

Let m represent the number of histogram bins.m varies
from 3 to 9 for the CHoG descriptor. LetP = [p1, p2, ...pm] ∈
Rm

+ be the original distribution as described by the gradient

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 4

histogram, andQ = [q1, q2,qm] ∈ Rm
+ be the quantized

probability distribution. First, we first construct a lattice of
distributions (ortypes) Qn = Q(k1, . . . , km) with probabilities

qi =
ki

n
, ki, n ∈ Z+ ,

∑

i

ki = n (1)

We show several examples of such sets inm = 3 dimensions
in Fig. 5.

Fig. 5. Type lattices and their Voronoi partitions in3 dimensions(m =
3, n = 1, 2, 3).

The parametern controls the fidelity of quantization and
higher the value ofn parameter, higher the fidelity. Second,
after quantizing the distributionP , we compute an index for
the type. The total number of typesK(m,n) is the number
of partitions ofn into m termsk1 + . . . + km = n

K(m,n) =

(

n + m − 1

m − 1

)

, (2)

The algorithm that maps a type to its indexfn :
{k1, . . . , km} → [0,K(m,n) − 1] is described in [24].

Finally, we encode the index in each spatial cell with fixed-
length or entropy codes. Fixed-length encoding provides the
benefit of compressed domain matching at the cost of a small
performance hit. The Type Quantization and coding scheme
described here performs close to optimal Lloyd-Max VQ
and does not require storage of codebooks on the mobile
client. The CHoG descriptor with Type Coding at 60 bits
matches the performance of the 128 dimensional 1024-bit
SIFT descriptor [24].

As illustrated in Fig. 3, each interest point has a location,
scale and orientation associated with it. Interest point locations
are needed in the geometric verification step to validate
potential candidate matches. The location of each interestpoint
is typically stored as two numbers:x andy co-ordinates in the
image at sub-pixel accuracy [13]. In a floating point represen-
tation, each feature location would require 64 bits, 32 bitseach
for x andy. This is comparable in size to the CHoG descriptor
itself. We have developed a novel histogram coding scheme
to encode thex, y coordinates of feature descriptors [36] (see
Box - Location Histogram Coding). With location histogram
coding, we can reduce location data by an order of magnitude
compared to their floating point representation, without loss
in matching accuracy.

Box 2 - Location Histogram Coding

Location Histogram Coding is used to compress feature
location data efficiently. We note that the interest points in
images are spatially clustered, as shown in Fig. 6. To encode
their locations, we first generate a 2-D histogram from the
locations of the descriptors, Fig. 7. Location histogram coding
provides two key benefits. First, encoding the locations of aset
of N features as a histogram reduces the bitrate bylog(N !),
compared to encoding each feature location in sequence [36].
This gain arises because ordering information (N ! unique
orderings) is discarded when a histogram is computed. Second,
we exploit the spatial correlation between the locations of
different descriptors as illustrated in Fig. 6.

Fig. 6. Interest point locations in images tend to cluster spatially.

We divide the image into spatial bins and count the number
of features within each spatial bin. We compress the binary
map, indicating which spatial bins contains features, and a
sequence of feature counts, representing the number of features
in occupied bins. We encode the binary map using a trained
context-based arithmetic coder, with neighbouring bins being
used as the context for each spatial bin. Using location
histogram coding, we can transmit each location with∼5
bits/descriptor with little loss in matching accuracy - a∼12.5×
reduction in data compared to transmitting the location using
a 64-bit floating point representation [37].

A few hundred descriptors per query image are sufficient for
achieving high matching accuracy for large databases [24],
[20]. Table I summarizes data reduction using CHoG and
location histogram coding for 500 descriptors per image.

TABLE I
DATA REQUIRED TO REPRESENT AN IMAGE FOR MOBILE VISUAL SEARCH.

Scheme Data (KB)
JPEG Compressed Image 30-40
SIFT + Uncompressed Location Data 66.4
CHoG + Uncompressed Location Data 7.6
CHoG + Compressed Location Data 4.0

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 5

1

2

1

1

1

1 1 1

1

3

Fig. 7. We represent the location of the descriptors using a location histogram.
The image is first divided into evenly spaced blocks. We enumerate the
features within each spatial block generating a location histogram.

Feature Indexing and Matching

For a large database of images, comparing the query image
against every database image using pairwise feature matching
is infeasible. A database with millions of images might contain
billions of features. A linear scan through the database would
be too time-consuming for interactive mobile visual search
applications. Instead, we must use a data structure that can
quickly return a shortlist of the database candidates most likely
to match the query image. The shortlist may contain false
positives, as long as the correct match is included. Slower
pairwise comparisons can subsequently be performed on just
the shortlist of candidates rather than the entire database.

Many data structures have been proposed for efficiently
indexing all the local features in a large image database.
Lowe proposes approximate nearest neighbour (ANN) search
of SIFT descriptors with a best-bin-first strategy [13]. Oneof
the most popular methods is Sivic and Zisserman’s Bag-of-
Features (BoF) approach [9]. The BoF codebook is trained
by k-means clustering of many training descriptors. During
a query, scoring the database images can be made fast by
using an inverted file index associated with the BoF codebook.
To generate a much larger codebook, Nister and Stewenius
utilize hierarchical k-means clustering to create a Vocabulary
Tree (VT) [10]. The VT is explained in greater detail in
the box “Vocabulary Tree and Inverted Index.” Alternatively,
Philbin et al. use randomized k-d trees to partition the feature
descriptor space [12]. Subsequent improvements in tree-based
quantization and ANN search include greedy N-best paths
[38], query expansion [39], efficient updates over time [40],
soft binning [12], and Hamming embedding [11].

As database size increases, the amount of memory used
to index the database features can become very large. Thus,
developing a memory-efficient indexing structure is a problem
of increasing interest. Chum et al. use a set of compact min-
hashes to perform near-duplicate image retrieval [41], [42].
Zhang et al. decompose each image’s set of features into a
coarse signature and a refinement signature [43]. The refine-
ment signature is subsequently indexed by a locality sensitive
hash (LSH). To support the popular VT scoring framework,
inverted index compression methods for both hard-binned and
soft-binned VT’s have been developed by us [44], as explained
in the box “Inverted Index Compression.” The memory for

BoF image signatures can alternatively be reduced using the
mini-BoF approach [45]. Very recently, visual word residuals
on a small BoF codebook have shown promising retrieval
results with low memory usage [46], [47]. The residuals are
indexed either with PCA and product quantizers [46] or with
LSH [47].

Box 3 - Vocabulary Tree and Inverted Index

A Vocabulary Tree (VT) with an inverted index can be used
to quickly compare images in a large database against a query
image. If the VT hasL levels excluding the root node and each
interior node hasC children, then a fully balanced VT contains
K = CL leaf nodes. Fig. 8 shows a VT withL = 2, C = 3,
andK = 9. The VT for a particular database is constructed by
performing hierarchical k-means clustering on a set of training
feature descriptors representative of the database, as illustrated
in Fig. 8(a). Initially,C large clusters are generated from all the
training descriptors by ordinary k-means with an appropriate
distance function like L2-norm or symmetric KL divergence.
Then, for each large cluster, k-means clustering is appliedto
the training descriptors assigned to that cluster, to generate
C smaller clusters. This recursive division of the descriptor
space is repeated until there are enough bins to ensure good
classification performance. Typically,L = 6 andC = 10 are
selected [10], in which case the VT hasK = 106 leaf nodes.

(a)

(b)

Fig. 8. (a) Construction of a Vocabulary Tree by hierarchical k-means clus-
tering of training feature descriptors. (b) Vocabulary Tree and the associated
inverted index.

The inverted index associated with the VT maintains two
lists per leaf node, as shown in Fig. 8(b). For nodek, there
is a sorted array of image IDs{ik1, ik2, · · · , ikNk

} indicating
which Nk database images have visited that node. Similarly,
there is a corresponding array of counts{ck1, ck2, · · · , ckNk

}
indicating the frequency of visits. During a query, a database
of N total images can be quickly scored by traversing only

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 6

the nodes visited by the query descriptors. Lets(i) be the
similarity score for theith database image. Initially, prior to
visiting any node,s(i) is set to0. Suppose nodek is visited by
the query descriptors a total ofqk times. Then, all the images
in the inverted list{ik1, · · · , ikNk

} for nodek will have their
scores incremented according to

s (ikj) := s (ikj) +
w2

kckjqk

Σikj
Σq

j = 1, · · · , Nk (3)

wherewk is an inverse document frequency (IDF) weight used
to penalize often-visited nodes,Σikj

is a normalization factor
for database imageikj , andΣq is a normalization factor for
the query image.

wk = log(N/Nk) (4)

Σikj
=

K
∑

n=1

wn (count for DB imageikj at noden) (5)

Σq =

K
∑

n=1

wn (count for query image at noden) (6)

Scores for images at the other nodes visited by the query
image are updated similarly. The database images attaining
the highest scoress(i) are judged to be the best matching
candidates and kept in a shortlist for further verification.

Soft binning [12] can be used to mitigate the effect of
quantization errors for a large VT. As seen in Fig. 8(a), some
descriptors lie very close to the boundary between two bins.
When soft binning is employed, the visit counts are then no
longer integers but rather fractional values. For each feature
descriptor, them nearest leaf nodes in the VT are assigned
fractional counts

ci = 1/C · exp
(

−0.5d2
i /σ2

)

i = 1, · · · ,m (7)

C =
m

∑

i=1

exp
(

−0.5d2
i /σ2

)

(8)

where di is the distance between theith closest leaf node
and the feature descriptor, andσ is appropriately chosen to
maximize classification accuracy.

Box 4 - Inverted Index Compression

For a database containing one million images and a VT
that uses soft binning, each image ID can be stored in a 32-
bit unsigned integer and each fractional count can be storedin
a 32-bit float in the inverted index. The memory usage of the
entire inverted index is

∑K

k=1 Nk · 64 bits, whereNk is the
length of the inverted list at thekth leaf node. For a database of
one million product images, this amount of memory reaches
10 GB, a huge amount for even a modern server. Such a large
memory footprint limits the ability to run other concurrent
processes on the same server, such as recognition systems

for other databases. When the inverted index’s memory usage
exceeds the server’s available random access memory (RAM),
swapping between main and virtual memory occurs, which
significantly slows down all processes.

Uncoded Coded
0

5

10

M
em

or
y

U
sa

ge
 (

G
B

)

(a)
Uncoded Coded

0

2

4

6

Q
ue

ry
 L

at
en

cy
 (

se
c)

(b)

Fig. 9. (a) Memory usage for inverted index with and without compression.
A 5× savings in memory is achieved with compression. (b) Server-side query
latency (per image) with and without compression. The RBUC code is used
to encode the inverted index.

A compressed inverted index [44] can significantly reduce
memory usage without affecting recognition accuracy. First,
because each list of IDs{ik1, ik2, · · · , ikNk

} is sorted,
it is more efficient to store consecutive ID differences
{

dk1 = ik1, dk2 = ik2 − ik1, · · · , dkNk
= ikNk

− ik(Nk−1)

}

in place of the IDs. This practice is also commonly used in
text retrieval [48]. Second, the fractional visit counts can be
quantized to a few representative values using Lloyd-Max
quantization. Third, the distributions of the ID differences and
visit counts are far from uniform, so variable-length coding
can be much more rate-efficient than fixed-length coding.
Using the distributions of the ID differences and visit counts,
each inverted list can be encoded using an arithmetic code
(AC) [49]. Since keeping the decoding delay low is very
important for interactive mobile visual search applications,
a scheme that allows ultra-fast decoding is often preferred
over AC. The carryover code [50] and recursive bottom up
complete (RBUC) code [51] have been shown to be at least
10× faster in decoding than AC, while achieving comparable
compression gains as AC. The carryover and RBUC codes
attain these speed-ups by enforcing word-aligned memory
accesses.

Fig. 9(a) compares the memory usage of the inverted index
with and without compression, using the RBUC code. Index
compression reduces memory usage from nearly10 GB to
2 GB. This 5× reduction leads to a substantial speed-up in
server-side processing, as shown in Fig. 9(b). Without com-
pression, the large inverted index causes swapping between
main and virtual memory and slows down the retrieval engine.
After compression, memory swapping is avoided and memory
congestion delays no longer contribute to the query latency.

Geometric Verification

Geometric Verification (GV) typically follows the Feature
Matching step. In this stage, we use location information of
query and database features to confirm that the feature matches
are consistent with a change in viewpoint between the two
images. We perform pairwise matching of feature descriptors

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 7

Fig. 10. In the GV step, we match feature descriptors pairwiseand find
feature correspondences that are consistent with a geometric model. True
feature matches are shown in red. False feature matches are shown in green.

and evaluate geometric consistency of correspondences as
shown in Fig. 10. The geometric transform between query and
database image is estimated using robust regression techniques
like RANSAC [52] or the Hough transform [13]. The transfor-
mation can be represented by the fundamental matrix which
incorporates 3-D geometry, or simpler homography or affine
models. Geometric Verification tends to be computationally
expensive, which limits the list of candidate images to a small
number.

A number of groups have investigated different ways to
speed up the GV process. In [53], [54], Chum et al. investigate
how to optimize steps to speed up RANSAC. Jegou et al. [11]
use weak geometric consistency checks based on feature
orientation information. Some authors have also proposed
to incorporate geometric information into the VT matching
step [55], [42].

Geometric

Verification (GV)

Query

Data

Identity

Information

Vocabulary

Tree (VT)

Geometric

Re-ranking

Fig. 11. A image retrieval pipeline can be greatly sped up by incorporating
a geometric re-ranking stage.

To speed up geometric verification, one can add a geometric
re-ranking step before the RANSAC GV step as illustrated in
Fig. 11. In [56], we propose a re-ranking step that incorporates
geometric information directly into the fast index look up
stage, and use it to re-order the list of top matching images
(seeBox - Fast Geometric Re-ranking). The main advantage
of the scheme is that it only requiresx, y feature location data,
and does not use scale or orientation information as in [11].
As scale and orientation data are not used, they need not be
transmitted by the client, which reduces the amount of data
transferred. We typically run fast geometric re-ranking ona
large set of candidate database images, and reduce the list of
images that we run RANSAC on.

Box 5 - Fast Geometric Re-ranking

We have proposed a fast geometric re-ranking algorithm
in [56], that usesx, y locations of features to rerank a short-
list of candidate images. First, we generate a set of potential

feature matches between each query and database image based
on VT quantization results. After generating a set of feature
correspondences, we calculate a geometric score between
them. The process used to compute the geometric similarity
score is illustrated in Fig. 12. We find the distance between
two features in the query image and the distance between
the corresponding matching features in the database image.
The ratio of the distance corresponds to the scale difference
between the two images. We repeat the ratio calculation for
features in the query image that have matching database
features. If there exists a consistent set of ratios (as indicated
by a peak in the histogram of distance ratios), it is more likely
that the query image and the database image match.

(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 12. The location geometric score is computed as follows: (a) features
of two images are matched based on VT quantization, (b) distances between
pairs of features within an image are calculated, (c) log distance ratios of
the corresponding pairs (denoted by color) are calculated ,and (d) histogram
of log distance ratios is computed. The maximum value of the histogram is
the geometric similarity score. A peak in the histogram indicates a similarity
transform between the query and database image.

The geometric re-ranking is fast because we use the vocab-
ulary tree quantization results directly to find potential feature
matches and using a really simple similarity scoring scheme.
The time required to calculate a geometric similarity scoreis
1-2 orders of magnitude less than using RANSAC.

SYSTEM PERFORMANCE

What performance can we expect for a mobile visual
search system that incorporates all the ideas discussed so
far? To answer this question, we have a closer look at the
experimental Stanford Product Search System (Fig. 13). For
evaluation, we use a database of one million CD, DVD and
book cover images, and a set of 1000 query images (500×500
pixel resolution) [57] exhibiting challenging photometric and
geometric distortions, as shown in Fig. 14. For the client, we
use a Nokia 5800 mobile phone with a 300MHz CPU. For
the recognition server, we use a Linux server with a Xeon
E5410 2.33GHz CPU and 32GB of RAM. We report results
for both 3G and WLAN networks. For 3G, experiments are
conducted in an AT&T 3G wireless network, averaged over
several days, with a total of more than 5000 transmissions at
indoor locations where such an image-based retrieval system
would be typically used.

We evaluate two different modes of operation. InSend
Featuresmode, we process the query image on the phone
and transmit compressed query features to the server. InSend
Imagemode, we transmit the query image to the server and
all operations are performed on the server.

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 8

Fig. 14. Example image pairs from the dataset. A clean databasepicture
(top) is matched against a real-world picture (bottom) with various distortions.

We discuss results of three key aspects that are critical for
mobile visual search applications: retrieval accuracy, system
latency and power. A recurring theme throughout this section
will be the benefits of performing feature extraction on the
mobile device compared to performing all processing on a
remote server.

Retrieval Accuracy

It is relatively easy to achieve high precision (low false
positives) for mobile visual search applications. By requiring a
minimum number of feature matches after RANSAC geomet-
ric verification, we can avoid false positives entirely. We define
Recall as the percentage of query images correctly retrieved.
Our goal is to then maximize Recall at a negligibly low false
positive rate.

Fig. 15 compares the Recall for three schemes:Send Fea-
tures (CHoG), Send Features (SIFT)andSend Image (JPEG).
For the JPEG scheme, the bitrate is varied by changing the
quality of compression. For the SIFT scheme, we extract SIFT
descriptors on the mobile device, and transmit each descriptor
uncompressed as 1024 bits. For the CHoG scheme, we need to
transmit about 60 bits per descriptor accross the network. For
SIFT and CHoG schemes, we sweep the Recall-bitrate curve
by varying the number of descriptors transmitted.

First, we observe that a Recall of 96% is achieved at
the highest bitrate for challenging query images even with a
million images in the database. Second, we observe that the
performance of the JPEG scheme rapidly deteriorates at low
bitrates. The performance suffers at low bitrates as the interest
point detection fails due to JPEG compression artifacts. Third,
we note that transmitting uncompressed SIFT data is almost
always more expensive than transmitting JPEG compressed
images. Finally, we observe that the amount of data for CHoG
descriptors are an order of magnitude smaller than JPEG
images or SIFT descriptors, at the same retrieval accuracy.

System Latency

The system latency can be broken down into 3 components:
processing delay on client, transmission delay, and processing
delay on server.

Client and Server Processing Delay:We show the time
for the different operations on the client and server in Table
II. The Send Featuresmode requires∼1 second for feature
extraction on the client. However, this increase in client
processing time is more than compensated by the decrease in

10
0

10
1

10
2

80

82

84

86

88

90

92

94

96

98

100

Bitrate (KB)

R
ec

al
l (

%
)

Send Feature(CHoG)
Send Image(JPEG)
Send Feature(SIFT)

Fig. 15. Bitrate comparisons of different schemes. CHoG descriptor data are
an order of magnitude smaller compared to JPEG images or uncompressed
SIFT descriptors.

transmission latency, compared toSend Image, as we illustrate
in Fig. 16 and 17. On the server, using VT matching with a
compressed inverted index, we can search through a million
image database in 100 milliseconds. We perform GV on a
short list of 10 candidates after fast geometric re-rankingof the
top 500 candidate images. We can achieve<1 second server
processing latency while maintaining high recall.

TABLE II
PROCESSINGTIME

Client side operations Time (sec)
Image capture 1-2
Feature extraction and compression 1-1.5
(for Send Featuresmode)

Server side operations Time (msec)
Feature extraction 100
(for Send Imagemode)
Vocabulary tree matching 100
Fast geometric re-ranking (per image) 0.46
Geometric verification (per image) 30

0 10 20 30 40 50
2

4

6

8

10

12

14

16

18

Query Data Size (KBs)

T
ra

n
s
m

is
s
io

n
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

In−door (I) (Average)

In−door (I) (Median)

In−door (II) (Average)

In−door (II) (Median)

Out−door (Average)

Out−door (Median)

(a)

0 10 20 30 40 50
0%

2%

4%

6%

8%

10%

12%

14%

Query Data Size (KBs)

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e
 O

u
t

(P
e
rc

e
n
t) In−door (I)

In−door (II)

Out−door

(b)

Fig. 16. Measured transmission latency (a) and time-out percentage (b) for
transmitting queries of different size over a 3G network. “In-door (I)” is tested
in-doors with poor connectivity. “In-door (II)” is tested in-doors with good
reception. “Out-door” is tested outside of buildings.

Transmission Delay:The transmission delay depends on
the type of network used. In Fig. 17, we observe that data
transmission time is insignificant for a WLAN network due
to the high bandwidth available. However, transmission time
turns out to be a bottleneck for 3G networks. In Fig. 16,
we present experimental results for sending data over a 3G
wireless network. We vary query data sizes from that of typical
compressed query features (3-4 KB) to typical JPEG query

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 9

Network

Server

Geometric Verification

Client

Feature

Compression

Display

Query Data

Identification Data

Image Feature

Extraction

Vocabulary Tree

Matching

Fig. 13. Stanford Product Search System. Due to the large database, the image recognition server is placed at a remote location. In most systems [3], [7],
[1], the query image is sent to the server and feature extraction is performed. In our system, we show that by performing feature extraction on the phone, we
can significantly reduce the transmission delay and provide an interactive experience.

images (50 KB) to learn how query size affects transmission
time. The communication time-out was set to 60 seconds. We
have conducted the experiment continuously over several days.
We tested at three different locations, typical locations where
a user might use the visual search application.

The median and average transmission latency of our experi-
ments are shown in Fig. 16. Sending the compressed query fea-
tures typically takes 3-4 seconds. The time required to sendthe
compressed query image is several times longer and varies sig-
nificantly at different locations. However, transmission delay
does not include the cases when communication fails entirely,
which increases with query size. We show the percentage of
transmissions that experience a time-out in Fig. 16(b). The
time-out percentage of transmitting compressed query features
is much lower than that of transmitting compressed query
images because of their smaller query size.

0

2

4

6

8

10

12

R
et

rie
va

l t
im

e
(s

)

JPG
 (3G)

Feature
 (3G)

Feature
Progressive
(3G)

JPG
(WLAN)

Feature
(WLAN)

Feature Extraction
Network Transmission
Image Recognition

Fig. 17. End-to-end latency for different schemes. Compared to Send Image
scheme, we achieve approximately 4× reduction in average system latency
using progressive transmission of CHoG feature descriptorsin a 3G network.

End-to-End Latency:We compare end-to-end latency for
different schemes in Fig. 17. For WLAN, we observe that
< 1 second query latency is achieved forSend Imagemode.
Send Featuresmode is slower due to the processing delay on
the client. With such fast response times over WLAN, we are
able to operate our system in a continuous Mobile Augmented
Reality mode [58].

For 3G networks, network latency remains the bottleneck
as seen in Fig. 17. In this scenario, there is significant benefit
in sending compressed features.Send Featuresreduces system
latency by 2× compared toSend Imagemode.

Energy Consumption

On a mobile device, we are constrained by the energy of the
battery, and hence, conserving energy is critical. We measure
the average energy consumption associated with a single query
using the Nokia Energy Profiler1 on the Nokia 5800 phone.

We show the average energy consumption for a single
query usingSend Featuresand Send Imagefor WLAN and
3G network connections in Fig. 18. For 3G connections, the
energy consumed inSend Imagemode is almost 3× as much
as Send Features. The additional time needed to transmit
image data compared to feature data results in a greater amount
of energy being consumed. For WLAN transmission,Send
Image consumes less energy, since feature extraction on the
mobile client is not required.

Finally, we compute the number of image queries the mobile
can send before the battery runs out of power. A typical phone
battery has voltage of 3.7 V and a capacity of∼1000 mAH
(or ∼13.3K Joules). Hence, for 3G connections, the maximum
number of images that the mobile can send is 13.3K Joules
/ 70 Joules =∼ 190 total queries. ForSend Features, we
would be able to perform 13.3 K joules / 21 Joules =∼630
total queries, which is 3× as many queries asSend Imagecan
perform. This difference becomes even more important as we
move towards streaming augmented reality applications.

0

10

20

30

40

50

60

70

Image
 (3G)

Feature
 (3G)

Image
(WLAN)

Feature
(WLAN)

E
ne

rg
y

(J
ou

le
s)

Fig. 18. Average energy consumption of a single query usingSend Image
andSend Featuresmode for various types of transmission.

1Nokia Energy Profiler: http://store.ovi.com/content/17374

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 10

CONCLUDING REMARKS

Mobile Visual Search is ready for prime-time. State-of-the-
art systems today achieve over 95% recall at negligible false
positive rate for databases with over 1M classes, a recognition
performance that is sufficient for many applications. The key
are robust and discriminative local features that are used in
a ”Bag-of-Visual-Words” approach. Robustness against scale
changes and rotation is achieved by interest point detection
algorithms that robustly yield not only a location, but also
feature scale and dominant orientation. That permits feature
descriptors computed on canonical patches in a local co-
ordinate system. Robustness against brightness and contrast
variations is achieved by normalizing the patch variance and
using only the image gradient to compute feature descriptors.
This takes care of much of the variability among corresponding
query and database features, but not all. Foreshortening affects
the feature descriptor and correspondences can no longer be
established, if the angle becomes extreme. Adding foreshort-
ened descriptors to the database or using affine invariant
descriptors are possible remedies. Robustness against blur
(particularly motion blur) is typically lacking, but wouldbe
highly desirable. By using clever hierarchical data structures,
such as vocabulary trees, fast retrieval can be achieved in less
than 1 sec on a typical desktop CPU for databases of more
than a 1M images. Such speed requires a precomputed inverted
file index which is stored entirely in RAM - seeking data on
a hard disk would slow retrieval considerably. Inverted index
compression can be used to fit even larger data structures in
RAM. For large databases, vocabulary trees must be combined
with a geometric verification stage to avoid false positives.
Geometric consistency checks are computationally expensive,
so it makes sense to use simple geometric re-ranking to reduce
the number of candidate images.

Feature compression is a key problem for visual search
to work with mobile devices. Sending a JPEG image as a
query over a slow wireless link can take a long time; it is
better to extract salient features on the phone instead and
send these features as the query to the server. Note that this
approach also provides a certain degree of privacy. For a
small database, compressed database features could be stored
on the mobile device, and matching could be performed
directly on the device without wireless communication. One
can compress well-known feature descriptors, such as SIFT,
trading off recognition performance against size. Better per-
formance, however, is achieved by the CHoG descriptor that
was designed directly for rate-constrained recognition. CHoG
needs about 60 bits per feature, including its location.

As an example throughout, we have used the Stanford
Product Search system which implements many of the ideas
discussed. We observe that the processing latency on the client
and server is typically on the order of∼1 second. The trans-
mission delay depends on the network being used. For WLAN,
the transmission delay is insignificant, and transmitting aJPEG
image as a query is faster than extracting CHoG features on
the phone. For 3G networks, the transmission delay is the
bottleneck in the end-to-end system latency. By transmitting
feature data, we can reduce end-to-end system latency to 2-3

seconds, compared to sending the image which takes several
times as long. Somewhat counter to intuition, extracting and
transmitting feature data on the mobile client requires 3× less
energy than sending the image.

Numerous open problems remain. Accurate and near-
instantaneous web-scale visual search with billions of images
will likely remain one of the Grand Challenges of multimedia
technology for years to come. And we would like to perform
mobile visual search at video rates, without ever pressing a
button. While faster processors and networks will get us closer
to this goal, lower-complexity image analysis algorithms are
urgently needed. Hardware support on mobile devices should
also help. Ultimately, we may expect to see ubiquitous mo-
bile augmented reality systems that continuously superimpose
information and links on everything the camera of a mobile
device sees, thus seamlessly linking the virtual world and the
physical world.

REFERENCES

[1] Google Goggles, http://www.google.com/mobile/goggles/.
[2] Nokia Point and Find, http://www.pointandfind.nokia.com.
[3] Kooaba, http://www.kooaba.com.
[4] B. Erol, E. Ant́unez, and J. Hull, “Hotpaper: multimedia interaction

with paper using mobile phones,” inProc. of the 16th ACM Multimedia
Conference, New York, NY, USA, 2008.

[5] J. Graham and J. J. Hull, “Icandy: a tangible user interface for itunes,”
in Proc. of CHI ’08: Extended abstracts on human factors in computing
systems, Florence, Italy, 2008.

[6] J. J. Hull, B. Erol, J. Graham, Q. Ke, H. Kishi, J. Moraleda,and
D. G. Van Olst, “Paper-based augmented reality,” inProc. of the 17th
International Conference on Artificial Reality and Telexistence (ICAT),
Washington, DC, USA, 2007.

[7] SnapTell, http://www.snaptell.com.
[8] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W. Chen, T. Bismpi-

giannis, R. Grzeszczuk, K. Pulli, and B. Girod, “Outdoors augmented
reality on mobile phone using loxel-based visual feature organization,”
in Proc. of ACM International Conference on Multimedia Information
Retrieval (ACM MIR), Vancouver, Canada, October 2008.

[9] J. Sivic and A. Zisserman, “Video Google: A Text RetrievalApproach to
Object Matching in Videos,” inProc. of IEEE International Conference
on Computer Vision (ICCV), Washington, DC, USA, 2003.

[10] D. Nistér and H. Steẃenius, “Scalable recognition with a vocabulary
tree,” in Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), New York, USA, June 2006.

[11] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and
weak geometric consistency for large scale image search,” inProc. of
European Conference on Computer Vision (ECCV), Berlin, Heidelberg,
2008.

[12] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in
quantization - improving particular object retrieval in large scale image
databases,” inProc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Anchorage, Alaska, June 2008.

[13] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[14] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Van Gool, “A Comparison of Affine
Region Detectors,”International Journal on Computer Vision, vol. 65,
no. 1-2, pp. 43–72, 2005.

[15] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proc. of 4th Alvey Vision Conference, 1988.

[16] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide baseline
stereo from maximally stable extremal regions,” inProc. of British
Machine Vision Conference (BMVC), Cardiff, Wales, UK, September
2002.

[17] E. Rosten and T. Drummond, “Machine Learning for High Speed
Corner Detection,” inProc. of Euproean Conference on Computer Vision
(ECCV), Graz, Austria, May 2006.

[18] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded UpRobust
Features,” inProc. of European Conference on Computer Vision
(ECCV), Graz, Austria, May 2006.

IEEE SIGNAL PROCESSING MAGAZINE, SPECIAL ISSUE ON MOBILE MEDIA SEARCH 11

[19] K. Mikolajczyk and C. Schmid, “Performance evaluation oflocal
descriptors,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005.

[20] S. S. Tsai, D. M. Chen, V. Chandrasekhar, G. Takacs, N. M.Cheung,
R. Vedantham, R. Grzeszczuk, and B. Girod, “Mobile Product Recogni-
tion,” in Proc. of ACM Multimedia (ACM MM), Florence, Italy, October
2010.

[21] D. Lowe, “Object Recognition from Local Scale-Invariant Features,” in
Proc. of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Los Alamitos, CA, August 1999.

[22] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
feature,” Computer Vision and Image Understanding, vol. 110, no. 3,
pp. 346–359, 2008.

[23] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, R. Grzeszczuk,
and B. Girod, “CHoG: Compressed Histogram of Gradients - A low
bit rate feature descriptor,” inProc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Miami, Florida, June 2009.

[24] V. Chandrasekhar, Y. Reznik, G. Takacs, D. M. Chen, S. S.Tsai,
R. Grzeszczuk, and B. Girod, “Study of Quantization Schemes for Low
Bitrate CHoG descriptors,” inProc. of IEEE International Workshop on
Mobile Vision (IWMV), San Francisco, California, June 2010.

[25] S. Winder and M. Brown, “Learning Local Image Descriptors,” in
Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, Minneapolis, Minnesota, 2007, pp. 1–8.

[26] S. Winder, G. Hua, and M. Brown, “Picking the best daisy,” in Proc.
of Computer Vision and Pattern Recognition (CVPR), Miami, Florida,
June 2009.

[27] V. Chandrasekhar, M. Makar, G. Takacs, D.M. Chen, S. S. Tsai, N. M.
Cheung, R. Grzeszczuk, Y. Reznik, and B. Girod, “Survey of SIFT
Compression Schemes,” inProc. of International Mobile Multimedia
Workshop (IMMW), IEEE International Conference on PatternRecog-
nition (ICPR), Istanbul, Turkey, August 2010.

[28] C. Yeo, P. Ahammad, and K. Ramchandran, “Rate-efficient visual cor-
respondences using random projections,” inProc. of IEEE International
Conference on Image Processing (ICIP), San Diego, California, October
2008.

[29] A. Torralba, R. Fergus, and Y. Weiss, “Small Codes and Large Image
Databases for Recognition,” inProc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Anchorage, Alaska, 2008.

[30] Y. Weiss, A. Torralba, and R. Fergus, “Spectral Hashing,” in Proc. of
Neural Information Processing Systems (NIPS), Vancouver, BC, Canada,
December 2008.

[31] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, and B. Girod,
“Transform coding of feature descriptors,” inProc. of Visual Communi-
cations and Image Processing Conference (VCIP), San Jose, California,
January 2009.

[32] H. Jegou, M. Douze, and C. Schmid, “Product Quantizationfor Nearest
Neighbor Search,”Accepted to IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2010.

[33] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” inProc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), San Diego, CA, June 2005.

[34] W. T. Freeman and M. Roth, “Orientation histograms for hand gesture
recognition,” inProc. of International Workshop on Automatic Face and
Gesture Recognition, 1994, pp. 296–301.

[35] E. Tola, V. Lepetit, P. Fua, “A Fast Local Descriptor forDense
Matching,” in Conference on Computer Vision and Pattern Recognition,
2008.

[36] S. S. Tsai, D. M. Chen, G. Takacs, V. Chandrasekhar, J. P.Singh, and
B. Girod, “Location coding for mobile image retreival systems,” in
Proc. of International Mobile Multimedia Communications Conference
(MobiMedia), London, UK, September 2009.

[37] S. S. Tsai, D. Chen, G. Takacs, V. Chandrasekhar, J. P. Singh, and
B. Girod, “Location coding for mobile image retrieval,” inProc. of
International Mobile Multimedia Communications Conference (Mobi-
media), London, UK, September 2009.

[38] G. Schindler, M. Brown, and R. Szeliski, “City-scale location recog-
nition,” in Proc. of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), Minneapolis, Minnesota, June
2007.

[39] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total recall:
Automatic query expansion with a generative feature model forobject
retrieval,” in Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Minneapolis, Minnesota, 2007.

[40] T. Yeh, J. J. Lee, and T. J. Darrell, “Adaptive vocabulary forests for
dynamic indexing and category learning,” inProc. of IEEE International
Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, 2007.

[41] O. Chum, J. Philbin, and A. Zisserman, “Near duplicate image detection:
min-hash and tf-idf weighting,” inProc. of British Machine Vision
Conference (BMVC), Leeds, United Kingdom, September 2008.

[42] O. Chum and M. Perdoch and J. Matas, “Geometric min-Hashing:
Finding a (thick) needle in a haystack,” inProc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Miami, Florida,
USA, June 2009.

[43] X. Zhang, Z. Li, L. Zhang, W.-Y. Ma, and H.-Y. Shum, “Efficient
indexing for large-scale visual search,” inProc. of IEEE International
Conference on Computer Vision (ICCV), Kyoto, Japan, September 2009.

[44] D. M. Chen, S. S. Tsai, V. Chandrasekhar, G. Takacs, R. Vedantham,
R. Grzeszczuk, and B. Girod, “Inverted Index Compression forScalable
Image Matching,” inProc. of IEEE Data Compression Conference
(DCC), Snowbird, Utah, March 2010.

[45] H. Jegou, M. Douze, and C. Schmid, “Packing bag-of-features,” inProc.
of IEEE International Conference on Computer Vision (ICCV), Kyoto,
Japan, September 2009.

[46] H. Jegou, M. Douze, C. Schmid, and P. Perez, “Aggregatinglocal
descriptors into a compact image representation,” inProc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), San
Francisco, CA, USA, June 2010.

[47] F. Perronnin, Y. Liu, J. Sanchez, and H. Poirier, “Large-scale image
retrieval with compressed fisher vectors,” inProc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), San Francisco,
CA, USA, June 2010.

[48] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM
Computing Surveys, vol. 38, no. 2, pp. 6, July 2006.

[49] A. Said, “Comparative analysis of arithmetic coding computational
complexity,” in HP Labs Technical Report, 2004.

[50] V. N. Anh and A. Moffat, “Inverted index compression using word-
aligned binary codes,”Information Retrieval, vol. 8, no. 1, pp. 151–166,
January 2005.

[51] A. Moffat and V. N. Anh, “Binary codes for non-uniform sources,” in
Proc. of IEEE Data Compression Conference (DCC), Snowbird, Utah,
March 2005.

[52] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
paradigm for model fitting with applications to image analysisand
automated cartography,”Communications of ACM, vol. 24, no. 6, pp.
381–395, 1981.

[53] O. Chum, J. Matas, and J. V. Kittler, “Locally optimized RANSAC,” in
Proc. of DAGM Symposium, Magdeburg, Germany, September 2003.

[54] O. Chum, T. Werner, and J. Matas, “Epipolar geometry estimation
via ransac benefits from the oriented epipolar constraint,”in Proc. of
International Conference on Pattern Recognition (ICPR), Cambridge,
UK, August 2004.

[55] Z. Wu, Q. Ke, M. Isard, and J. Sun, “Bundling features forlarge
scale partial-duplicate web image search,” inProc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Miami, Florida,
USA, 2009.

[56] S. S. Tsai, D. M. Chen, G. Takacs, V. Chandrasekhar, R. Vedantham,
R. Grzeszczuk, and B. Girod, “Fast Geometric Re-ranking for Image
based Retrieval,” inProc. of IEEE International Conference on Image
Processing (ICIP), Hong Kong, September 2010.

[57] D. M. Chen, S. S. Tsai, R. Vedantham, R. Grzeszczuk, and
B. Girod, CD Cover Database - Query Images, April 2008,
http://vcui2.nokiapaloalto.com/ dchen/cibr/testimages/.

[58] D. M. Chen, S. S. Tsai, R. Grzeszczuk, R. Vedantham, and B.Girod,
“Streaming mobile augmented reality on mobile phones,” inProc. of
International Symposium on Mixed and Augmented Reality (ISMAR),
Orlando, Florida, USA, October 2009.

