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OBILE phones have evolved into powerful image

and video processing devices, equipped with high-
resolution cameras, color displays, and hardware-aatekbr
graphics. They are increasingly also equipped with GPS, and
connected to broadband wireless networks. All this enables
a new class of applications which use the camera phone to
initiate search queries about objects in visual proximityhe
user (Fig 1). Such applications can be used, e.g., for iden-
tifying products, comparison shopping, finding informatio
about movies, CDs, real estate, print media or artworkst Fir
deployments of such systems include Google Goggles [1],
Nokia Point and Find [2], Kooaba [3], Ricoh iCandy [4], [5],

[6] and Amazon Snaptell [7].
Mobile image retrieval applications pose a unique set of
challenges. What part of the processing should be perfornfegl 1. Example of a mobile visual search application. The psénts his
on the mobile client, and what part is better carried out at tfjamera phone at an object and obtains relevant informationt abo
server? On the one hand, transmitting a JPEG image could
take tens of seconds over a slow wireless link. On the other S —
hand, extraction of salient image features is now possihle o
mobile devices in seconds or less. There are several pessibl
client-server architectures:

. . . . Query Feature Feature Geometric

o The _moblle cllgnt transm.|ts a query image to the server. Image ﬂ Extraction * Matching *Veriﬁcaﬁon
The image retrieval algorithms run entirely on the server,
including an analysis of the query image.

« The mobile client processes the query image, extrag§. 2. Ppipeline for image retrieval. Local features are aoted from the
features and transmits feature data. The image retriegaéry image. Feature Matching finds a small set of images in trabaise
algorithms run on the server using the feature data t have many features in common with the query image. The Geometr

erification step rejects all matches with feature locatidimat cannot be
query. plausibly explained by a change in viewing position.

« The mobile client downloads data from the server, and
all image matching is performed on the device.

One could also imagine a hybrid of the approaches me¥e first review large-scale image retrieval highlightingemt
tioned above. When the database is small, it can stored on iegress in mobile visual search. As an example, we then
phone and image retrieval algorithms can be run locally [g@resent the Stanford Product Search system, a low latency
When the database is large, it has to be placed on a remisteractive visual search system. Several sidebars irhite

server and the retrieval algorithms are run remotely. interested reader to dig deeper into the underlying algost
In each case, the retrieval framework has to work within
stringent memory, computation, power and bandwidth con- ROBUSTMOBILE IMAGE RECOGNITION

straints of the mobile device. The size of the data transuhitt h tul algorith ¢ .
over the network needs to be as small as possible to reducd € Most successful algorithms for content-based image

network latency and improve user experience. The serJgiieval today use an approach that is referred to as "Bag

latency has to be low as we scale to large databases. FurtfbrFeatures” (BoF) or “Bag of Words™ (Bow). The BoW

the retrieval system needs to be robust to low quality camel‘gea is borrowed from text retneva_l. _To flnq a particularttex
phone images. This paper reviews recent advances in contdicument, such as a web page, it is sufficient to use a few

based image retrieval with a focus on mobile application%’.e”"?hosen words. In the database, thg document itself can
likewise be represented by a “bag” of salient words, regasi|

Bernd Girod, Vijay Chandrasekhar, David Chen, Ngai-Man@ige Gabriel Of where these words appear in the text. For images, robust

Takacs and Sam Tsai are with Stanford University, CA. _ local features take the analogous role of “visual wordsKeLi
Radek Grzeszczuk and Ramakrishna Vedantham are with NoldaaReh . . . .
Center, Palo Alto, CA. text retrieval, BoF image retrieval does not consider where
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Fig. 3. lllustration of feature extraction. We first computéerest points (e.g., corners, blobs) at different scalbe. patches at different scales are oriented
along the dominant gradient. Feature extraction is follolwgdomputation of feature descriptors that capture the reatiearacteristics of the image around
the interest point. Here, we illustrate how the CHoG desaerifs computed. The scaled and oriented canonical patcleedivdded into localized spatial bins,
which gives robustness to interest point localization reffbe distribution of gradients in each spatial bin is corapeel to obtain a very compact description
of the patch.

of the retrieval pipeline. However, the variability of feeés Feature Extraction
extracted from different images of the same object makes thqnterest Point DetectionFeature extraction typically starts

problem much more challenging. by finding salient interest points in the image. For robustge
A typical pipeline for image retrieval is shown in Fig. 2.maiching, we desire interest points to be repeatable under
First, local features are extracted from the query image TBerspective transformations (or, at least, scale changiesion
set of image features is used to assess the similarity betwegq translation) and real-world lighting variations. Aragple
query and database images. For mobile applications, thei of feature extraction is illustrated in Fig. 3. To achievalsc
features must be robust against geometric and photomésric Ghyariance, interest points are typically computed at plat
tortions encountered when the user takes the query phato frgegjes using an image pyramid [13]. To achieve rotation
a different viewpoint, and with different lighting, comgato  nyariance, the patch around each interest point is caatiic
the corresponding database image. oriented in the direction of the dominant gradient. llluation
Next, the query features are quantized [9], [10], [11], [12khanges are compensated by normalizing the mean and the
The partitioning into quantization cells is precomputed fastandard deviation of the pixels of the gray values withichea
the database, and each quantization cell is associated vgiich [14].
a list of database images in which the quantized featureNumerous interest point detectors have been proposed in the
vector somewhere appears. This “inverted file” circumvenfgerature. Harris Corners [15], SIFT Difference-of-Gsias
a pair-wise comparison of each query feature vector with gthoG) [13] keypoints, Maximally Stable Extremal Regions
the feature vectors in the database and is the key to VERYSER) [16], Hessian Affine [14], FAST [17] and Hessian-
fast retrieval. Based on the number of features they hamRbs [18] are some examples. The different interest point
in common with the query image, a short list of potentialldetectors provide different trade-offs in repeatabilityl @om-
similar images is selected from the database. plexity. E.g., the SIFT DoG points are slow to compute, but
Finally, a geometric verification step is applied to the mosiighly repeatable, while the FAST corner detector is exéalym
similar matches in the database. Geometric Verificationsfinéast but offers lower repeatability. In [19], Mikolajczykt e
a coherent spatial pattern between features of the queryeimal. compare different interest point detectors in a common
and the features of the candidate database image to enatireftamework.
the match is plausible. The Stanford Product Search system can perform feature
For mobile visual search, there are considerable chaltengextraction and compression on the client, to reduce system
to provide users with an interactive experience. Current datency. Current generation smart phones have limited ctenp
ployed systems typically transmit an image from the cliemower, typically only a tenth of what a desktop PC provides.
to the server, which might require tens of seconds. As We require interest points that are fast to compute and yighl
scale to large databases, the inverted file index becomgs wapeatable. We choose the Hessian-blob detector sped up
large, with memory swapping operations slowing down theith integral images [18] which provides a good trade-off of
Feature Matching stage. Further, the Geometric Verificatioepeatability and complexity. For VGA images, Hessiarbblo
step is computationally expensive and thus increases mespanterest point detection can be carried out~4l second on
time. We discuss each block of the retrieval pipeline in theurrent-generation smart phones [20].
following, focusing on how to meet the challenges of mobile Feature Descriptor ComputationAfter interest point detec-
visual search. tion, we compute a “visual word” descriptor on the normalize
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patch. We would like descriptors to be robust to small distor
tions in scale, orientation and lighting conditions. Alsee ’
require descriptors to be discriminative, i.e, charastiriof

an image or a small set of images. Descriptors that occur in

almost every image (the equivalent of the word “and” in text coG puilds upon the principles of HoG descriptors with
documents) would not be useful for retrieval. Since Loweie goal of being highly discriminative at low bitrates. F&
paper in 1999 [21], the highly discriminative SIFT desaipt jjjystrates how CHoG descriptors are computed.

remains the most popular descriptor in computer visioneOth - ", 5ich s divided into spatial bins, which provides
examples 9f feature descriptors are Grad|ent Locat|on. . robustness to interest point localization error. We divide
entation Histogram (GLOH) by Mikolajczyk and Schmid [19], the patch around each interest point into soft log po-
Speeded Up Robust Fegtures (SURF) by. Bay et al. [22] and lar spatial bins using DAISY configurations proposed
our own Compressed Histogram of Gradients (CHoG) [23], in [26]. The log polar configuration has been shown to

[24]|' V\fmiﬁr anderown [25]}[3.6{_2’ anil '(\j/”kOI".’IjiZyk etal. [19 be more effective than the square grid configuration used
evaluate the performance of different descriptors. in SIFT [26], [35], [19].

Box 1 - CHoG: A Low Bitrate Descriptor ‘

« The joint (d,, d,) gradient histogram in each spatial bin
As a 128-dimensional descriptor, SIFT descriptor is coaven is captured directly into the descriptor, as illustrated in
tionally stored as 1024 bits (8 bits/dimension). Alas, tlze sf Fig. 4. CHoG histogram binning exploits the skew in
SIFT descriptor data from an image is typically larger tHaa t gradient statistics that are observed for patches exttacte
size of the JPEG compressed image itself. Several compressi ~ around interest points.
schemes have been proposed to reduce the bitrate of SIF¥ CHoG retains the information in each spatial bin as
descriptors. In our recent work [27], we survey different a distribution. This allows the use of more effective
SIFT compression schemes. They can be broadly categorized distance measures like KL divergence, and more impor-
into schemes based on hashing [28], [29], [30], transform tantly, allow us to apply quantization and compression
coding [31], [27] and vector quantization [32], [10], [11]. schemes that work well for distributions, to produce

We note that hashing schemes like Locality Sensitive Hashin ~ compact descriptors.

(LSH), Similarity Sensitive Coding (SSC) or Spectral Hashi
(SH) do not perform well at low bitrates. Conventional trans
form coding schemes based on Principal Component Analysis
(PCA) do not work well due to the highly non-Gaussian
statistics of the SIFT descriptor. Vector quantizationesnohs
based on the Product Quantizer [32] or a Tree Structured
Vector Quantizer [10] are complex and require storage gflar
codebooks on the mobile device. , S S S |
: : . @) (b)

Through our experiments, we came to realize that simply
compressing an "off-the-shelf” descriptor does not lead to e NS | e
the best rate-constrained image retrieval performance On B — o e P TS
can do better by designing a descriptor with compression B I e e e L
in mind. Of course, such a descriptor still has to be robust (VQ-3 (VQ-H (VQ-7 (VQ-9
and highly discriminative. Ideally, it would permit deguor Fig. 4. The joint(d., dy) gradient distributiond) over a large number of
comparisons in the compressed domain for speedy featusts, and ), its contour plot. The greater variance graxis results from
matching. To meet all these requirements simultaneouséy, fligning the patches along the most dominant gradient afterest point

. . . ection. The quantization bin constellations VQ-3, VQ/®-7 and VQ-9
de5|gned the Compressed Histogram of Gradients (CHO their associated Voronoi cells are shown at the bottom.

descriptor [23], [24]. Descriptors based on the distribuiti

of gradients within a patch of pixels have been shown to beTypically, 9 to 13 spatial bins and 3 to 9 gradient bins are
highly discriminative [25], [19]. Lowe [13], Baet al. [22], chosen resulting in 27 to 117 dimensional descriptors. For
Dalal and Triggs [33], Freeman and Roth [34], and Windexompressing the descriptor, we quantize the gradientdrizto

et al. [26] have proposed Histogram of Gradient (HoG) based each spatial bin individually. In [23], [24], we have egptd
descriptors. The CHoG descriptor is designed to work wedkveral novel quantization schemes that work well for com-
at low bitrates (se®ox - CHoG: A Low Bitrate Descriptdr pressing distributions: Quantization by Huffman Codingpd
CHoG achieves the performance of 1024-bit SIFT at less th@oding and optimal Lloyd-Max Vector Quantization (VQ).
60 bits/descriptor. Since CHoG descriptor data are an ordéere, we briefly discuss one of the schemes: Type Coding,
of magnitude smaller than SIFT or JPEG compressed imagesich is linear in complexity to the number of histogram bins
it can be transmitted much faster over slow wireless linkand performs close to optimal Lloyd-Max VQ.

A small descriptor also helps if the database is stored in theLet m represent the number of histogram bims. varies
mobile device. The smaller the descriptor, the more featurigom 3 to 9 for the CHoG descriptor. Lél = [p1, p2, ...pm] €

can be stored in limited memory. R be the original distribution as described by the gradient

Probability

y-Gradient
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histogram, and? = [q1,q2,....qm] € R be the quantized
probability distribution. First, we first construct a lati of
distributions (ottypeg Q,, = Q(k1, - .., k., ) with probabilities ’

ks
qi . ki, n € +5 % ki=n ( )

Box 2 - Location Histogram Coding

Location Histogram Coding is used to compress feature
location data efficiently. We note that the interest poimts i
images are spatially clustered, as shown in Fig. 6. To encode
their locations, we first generate a 2-D histogram from the
el 2 =3 locations of the descriptors, Fig. 7. Location histogrardieg
provides two key benefits. First, encoding the locations s¥éta
of N features as a histogram reduces the bitratéoyN!),
compared to encoding each feature location in sequence [36]
This gain arises because ordering informatia¥! (unique
« orderings) is discarded when a histogram is computed. $Secon
we exploit the spatial correlation between the locations of
different descriptors as illustrated in Fig. 6.

We show several examples of such setsnin= 3 dimensions
in Fig. 5.

00 00
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Fig. 5. Type lattices and their Voronoi partitions dndimensions(m =
3,n=1,2,3).

The parameter. controls the fidelity of quantization and
higher the value of. parameter, higher the fidelity. Second,
after quantizing the distributio®, we compute an index for
the type. The total number of typds(m,n) is the number
of partitions ofn into m termsk; +... + k,, =n

K(m,n) = (n—i—m—l)’

m—1
The algorithm that maps a type to its index,
{k1,...,km} — [0, K(m,n) — 1] is described in [24].

Finally, we encode the index in each spatial cell with fixed-
length or entropy codes. Fixed-length encoding provides th
benefit of Compressed domain matching at the cost of a snfadl 6. Interest point locations in images tend to clustetiala
performance hit. The Type Quantization and coding scheme
described here performs close to optimal Lloyd-Max VQ We divide the image into spatial bins and count the number
and does not require storage of codebooks on the mobefeatures within each spatial bin. We compress the binary
client. The CHoG descriptor with Type Coding at 60 bitgnap, indicating which spatial bins contains features, and a
matches the performance of the 128 dimensional 1024-BRquence of feature counts, representing the number afésat
SIFT descriptor [24]. in occupied bins. We encode the binary map using a trained
context-based arithmetic coder, with neighbouring binisidpe
used as the context for each spatial bin. Using location

As illustrated in Fig. 3, each interest point has a locatiohjstogram coding, we can transmit each location with
scale and orientation associated with it. Interest poications bits/descriptor with little loss in matching accuracy ~&2.5x
are needed in the geometric verification step to validateduction in data compared to transmitting the locatiomgisi
potential candidate matches. The location of each intprat @ 64-bit floating point representation [37].
is typically stored as two numbers:andy co-ordinates in the
image at sub-pixel accuracy [13]. In a floating point repnese
tation, each feature location would require 64 bits, 32 éitsh A few hundred descriptors per query image are sufficient for
for x andy. This is comparable in size to the CHoG descriptaachieving high matching accuracy for large databases [24],
itself. We have developed a novel histogram coding scheif#®]. Table | summarizes data reduction using CHoG and
to encode ther, y coordinates of feature descriptors [36] (secation histogram coding for 500 descriptors per image.
Box - Location Histogram CodingWith location histogram
COding’ we can reduce location data by an order of magnituBgTA REQUIRED TO REPRESENI’?\EE'I\E/IAIGE FOR MOBILE VISUAL SEARCH
compared to their floating point representation, withowslo

in matching accuracy. Scheme Data (KB)
JPEG Compressed Image 30-40
SIFT + Uncompressed Location Datd 66.4
CHoG + Uncompressed Location Data 7.6
CHoG + Compressed Location Data 4.0

@)
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o ° BoF image signatures can alternatively be reduced using the
°° o, 0 ° mini-BoF approach [45]. Very recently, visual word resilua
°° % L % on a small BoF codebook have shown promising retrieval

. oo O . results with low memory usage [46], [47]. The residuals are
indexed either with PCA and product quantizers [46] or with

- : LSH [47].

o © 5 2 1
o |o % N 1]1 3

o 1
o oo 1 1)1
Box 3 - Vocabulary Tree and Inverted Index

Fig. 7. We represent the location of the descriptors usimgation histogram.
The image is first divided into evenly spaced blocks. We enurmeitze

features within each spatial block generating a locatiatolgram. A VocabUIary Tree (VT) with an inverted index can be used

to quickly compare images in a large database against a query
image. If the VT had. levels excluding the root node and each
Feature Indexing and Matching interior node hag’ children, then a fully balanced VT contains

_ L i Hh — —
For a large database of images, comparing the query imdge— ¢ eaf nodes. Fig. 8 shows a VT with = 2, €' =3,

against every database image using pairwise feature mgtcHindZ = 9. The VT for a particular database is constructed by
is infeasible. A database with millions of images might eamt Performing hierarchical k-means clustering on a set ohirgy

billions of features. A linear scan through the databaseldvo€2ture descriptors representative of the databasenagted

be too time-consuming for interactive mobile visual seardf Fig- 8(2). Initially,C’ large clusters are generated from all the

applications. Instead, we must use a data structure that &gjning descriptors by ordinary k-means with an appragpria

quickly return a shortlist of the database candidates riteyl distance function like L2-norm or symmetric KL divergence.

to match the query image. The shortlist may contain falgd!e: for each large cluster, k-means clustering is apibed

positives, as long as the correct match is included. Slowd training descriptors assigned to that cluster, to gaeer

pairwise comparisons can subsequently be performed on jgslsmalller clusters. Tr_ns recursive division _of the descripto

the shortlist of candidates rather than the entire database SP3C€ IS r.epeated until there are enough bins to ensure good
Many data structures have been proposed for efficienfiAssification performance. Typically, = 6 andﬁC = 10 are

indexing all the local features in a large image databasi'ected [10], in which case the VT haS= 10" leaf nodes.

Lowe proposes approximate nearest neighbour (ANN) search
of SIFT descriptors with a best-bin-first strategy [13]. Quie

the most popular methods is Sivic and Zisserman’s Bag-of-

Features (BoF) approach [9]. The BoF codebook is trained

by k-means clustering of many training descriptors. During ™
a query, scoring the database images can be made fast b =
using an inverted file index associated with the BoF codebook ~*
To generate a much larger codebook, Nister and Stewenius " O

utilize hierarchical k-means clustering to create a Votaiyu

o Training Descriptor

@ Root Node

A 1% Level Intermediate Node
@ 2" Level Leaf Node

Tree (VT) [10]. The VT is explained in greater detail in (@)

the box “Vocabulary Tree and Inverted Index.” Alternativel Vocabulary Tree Inverted Index

Philbin et al. use randomized k-d trees to partition theuiesat i1y 2 | i3 o |

descriptor space [12]. Subsequent improvements in treeeba e | iz | e | .o | o

guantization and ANN search include greedy N-best pat i : i i

[38], query expansion [39], efficient updates over time [40 1‘2 9 000 000 r -

S . . C21 C22 Co3 Con,

soft binning [12], and Hamming embedding [11]. 2

As database size increases, the amount of memory used (b)

to index the database features can become very large. Thus, _ _

developing a memory-efficient indexing structure i a peapl 1% & () Consructon of & Vocabui ree by nerachiemenns cue
of increasing interest. Chum et al. use a set of compact mifverted index.

hashes to perform near-duplicate image retrieval [41]].[42

Zhang et al. decompose each image’s set of features into &he inverted index associated with the VT maintains two
coarse signature and a refinement signature [43]. The refitists per leaf node, as shown in Fig. 8(b). For nddehere
ment signature is subsequently indexed by a locality seesitis a sorted array of image IDS8 1, ix2, - - ,ixn, ; indicating
hash (LSH). To support the popular VT scoring frameworkyhich N;, database images have visited that node. Similarly,
inverted index compression methods for both hard-binneb athere is a corresponding array of coufitss, cka, - - , ckn, }
soft-binned VT’s have been developed by us [44], as exptainadicating the frequency of visits. During a query, a daseba
in the box “Inverted Index Compression.” The memory foof N total images can be quickly scored by traversing only
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the nodes visited by the query descriptors. lsét) be the for other databases. When the inverted index’s memory usage
similarity score for thei'" database image. Initially, prior to exceeds the server’s available random access memory (RAM),
visiting any nodes(4) is set to0. Suppose nodg is visited by swapping between main and virtual memory occurs, which
the query descriptors a total gf times. Then, all the images significantly slows down all processes.

in the inverted list{iy1,--- ,ixn, } for nodek will have their

scores incremented according to g‘ 10 o6
= 2
5 @
. , Wi, Ckjqk . s >4
S(ig;) =8 (ig;) + =—— =1,---, Ny 3 & 2
( ]) ( J) Eikj Eq J ? ’ ( ) 8 5 %
. . . > 4
wherewy, is an inverse document frequency (IDF) weight use s 2 2
to penalize often-visited nodes,, ; is a normalization factor 2 3o
for database imagé;;, and X, is a normalization factor for Uncoded Coded Uncoded Coded
the query image. (a) (b)
wr = log(N/Ny) (4) Fig. 9. (a) Memory usage for inverted index with and withounpoession.
K A 5x savings in memory is achieved with compression. (b) Servergigry
. . latency (per image) with and without compression. The RBUCedsdused
Yiy = Z w, (count for DB imagei,; at noden) (5) to encode the inverted index.
n=1
K _ A compressed inverted index [44] can significantly reduce
Xy = an (count for query image at node) (6) memory usage without affecting recognition accuracy. tFirs
n=1 because each list of IDik1,ik2, - ,%kN,} IS Sorted,
Scores for images at the other nodes visited by the quetyis more efficient to store consecutive ID differences
image are updated similarly. The database images attainml = k1, dka = 2 — k1, AEN, = kN, _ik(Nk—l)}

the highest scores(i) are judged to be the best matchingn place of the IDs. This practice is also commonly used in
candidates and kept in a shortlist for further verification.  text retrieval [48]. Second, the fractional visit counts dze
Soft binning [12] can be used to mitigate the effect ofjuantized to a few representative values using Lloyd-Max
guantization errors for a large VT. As seen in Fig. 8(a), songgiantization. Third, the distributions of the ID differescand
descriptors lie very close to the boundary between two bingsit counts are far from uniform, so variable-length cagin
When soft binning is employed, the visit counts are then r@n be much more rate-efficient than fixed-length coding.
longer integers but rather fractional values. For eachufeat Using the distributions of the ID differences and visit ctsyn
descriptor, them nearest leaf nodes in the VT are assigneeach inverted list can be encoded using an arithmetic code
fractional counts (AC) [49]. Since keeping the decoding delay low is very
important for interactive mobile visual search applicasip

— 2 2 ;o
¢ = 1/C-exp(-0.5d;/0%) i=1-m (1) 3 scheme that allows ultra-fast decoding is often preferred
_ - B 2, 2 over AC. The carryover code [50] and recursive bottom up
¢ = ;exp( 0.5d; /o ) (8) complete (RBUC) code [51] have been shown to be at least

10x faster in decoding than AC, while achieving comparable
where d; is the distance between thé closest leaf node compression gains as AC. The carryover and RBUC codes
and the feature descriptor, ardis appropriately chosen to attain these speed-ups by enforcing word-aligned memory
maximize classification accuracy. accesses.

Fig. 9(a) compares the memory usage of the inverted index
with and without compression, using the RBUC code. Index
compression reduces memory usage from neadlyGB to
2 GB. This 5x reduction leads to a substantial speed-up in
server-side processing, as shown in Fig. 9(b). Without com-
pression, the large inverted index causes swapping between
main and virtual memory and slows down the retrieval engine.
After compression, memory swapping is avoided and memory

For a database containing one million images and a chngestlon delays no longer contribute to the query latency

that uses soft binning, each image ID can be stored in a 32-

bit unsigned integer and each fractional count can be siared

a 32-bit float in the inverted index. The memory usage of the ) o

entire inverted index i$ X | N, - 64 bits, whereN,, is the Geometric Verification

length of the inverted list at thi" leaf node. For a database of Geometric Verification (GV) typically follows the Feature
one million product images, this amount of memory reach#atching step. In this stage, we use location information of
10 GB, a huge amount for even a modern server. Such a laeery and database features to confirm that the feature egatch
memory footprint limits the ability to run other concurrentire consistent with a change in viewpoint between the two
processes on the same server, such as recognition systenagjes. We perform pairwise matching of feature descriptor

Box 4 - Inverted Index Compression ‘
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feature matches between each query and database image based
on VT quantization results. After generating a set of featur
correspondences, we calculate a geometric score between
them. The process used to compute the geometric similarity
score is illustrated in Fig. 12. We find the distance between
two features in the query image and the distance between
the corresponding matching features in the database image.
The ratio of the distance corresponds to the scale differenc
Fig. 10. In the GV step, we match feature descriptors painaise find - hetween the two images. We repeat the ratio calculation for
feature correspondences th_at are consistent with a geomatn_jel. True features in the query image that have matching database
feature matches are shown in red. False feature matches ave shgreen.

features. If there exists a consistent set of ratios (asateld

by a peak in the histogram of distance ratios), it is mordyike
and evaluate geometric consistency of correspondencestigs the query image and the database image match.
shown in Fig. 10. The geometric transform between query and
database image is estimated using robust regression ¢eeimi

like RANSAC [52] or the Hough transform [13]. The transfor- ’ // A A
mation can be represented by the fundamental matrix whic ORM —L

T
incorporates 3-D geometry, or simpler homography or affin /\l} @ Q j

log () >

models. Geometric Verification tends to be computationall
expensive, which limits the list of candidate images to alsma
number.

A number of groups have mveStIgated different ways Ig. 12. The location geometric score is computed as folloalfdatures

speed up the GV process. In [53], [54], Chum et al. investigads two images are matched based on VT quantization, (b) dietahetween
how to optimize steps to speed up RANSAC. Jegou et al. [14dirs of features within an image are calculated, (c) logadise ratios of

use weak geometric consistency checks based on feat‘q orresponding pairs (denoted by color) are calculatew,(d) histogram
of Jog distance ratios is computed. The maximum value of thegiam is

Ori?ntation information-. S_Ome au_thor_s have also prOPQS geometric similarity score. A peak in the histogram ingisa similarity
to incorporate geometric information into the VT matchingansform between the query and database image.

step [55], [42].

(a) (b) (c) (d)

The geometric re-ranking is fast because we use the vocab-
ulary tree quantization results directly to find potentiedture
Query _||Vocabulary| | Geometric | | Geometric || /dentity i i imilari ;

Data [ Tree (VT) Re-ranking Verification (GV) P Information matck_les and gsmg a reaIIy Slmple Slmlla.my .SC'OI'IT.19 sgheme
The time required to calculate a geometric similarity sdere
1-2 orders of magnitude less than using RANSAC.

Fig. 11. A image retrieval pipeline can be greatly sped up lepiiporating
a geometric re-ranking stage.

To speed up geometric verification, one can add a geometric SYSTEM PERFORMANCE

re-ranking step before the RANSAC GV step as illustrated in What performance can we expect for a mobile visual
Fig. 11. In [56], we propose a re-ranking step that inco a . . :
'9 [56], we prop Ing Step Incorfesy search system that incorporates all the ideas discussed so

geometric information directly into the fast index look up% > To answer thi tion. we hav loser look at th
stage, and use it to re-order the list of top matching imageasr' 0 answe S question, we have a closer '00k at the

(seeBox - Fast Geometric Re-rankingThe main advantage experimental Stanford Product Search Sy;tem (Fig. 13). For
of the scheme is that it only requiresy feature location data, evaluation, we use a database of one million CD, DVD and

and does not use scale or orientation information as in [1%?0'( cover images, and a set of 1000 query imagesX500

As scale and orientation data are not used, they need not .)éel resolution) [57] exhibiting challenging photometand

transmitted by the client, which reduces the amount of daqgometrlc distortions, as shown in Fig. 14. For the clierd, w

transferred. We typically run fast geometric re-rankingan \oc & Nokia 5800 mobile phone with & 300MHz CPU. For

; ; ; recognition server, we use a Linux server with a Xeon
large set of candidate database images, and reduce thé IlsREh
images that we run RANSAC on. 410 2.33GHz CPU and 32GB of RAM. We report results

for both 3G and WLAN networks. For 3G, experiments are
conducted in an AT 3G wireless network, averaged over
several days, with a total of more than 5000 transmissions at
indoor locations where such an image-based retrieval rsyste
’ Box 5 - Fast Geometric Re-ranking would be typically used.
We evaluate two different modes of operation. $end

Featuresmode, we process the query image on the phone

We have proposed a fast geometric re-ranking algorithamd transmit compressed query features to the serv&eiha
in [56], that usest, y locations of features to rerank a shortimage mode, we transmit the query image to the server and
list of candidate images. First, we generate a set of patentill operations are performed on the server.
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Fig. 14. Example image pairs from the dataset. A clean databiasere
(top) is matched against a real-world pictubfton) with various distortions. 84/ e— Send Feature(CHoG)

82| —e— Send Image(JPEG)
—e— Send Feature(SIFT)

80

10° 10" 10

We discuss results of three key aspects that are critical for Birate (<8)

mobile visual search applications: retrieval accuracgtey Fig. 15, Bitrate comparisons of different schemes. CHoG dgiscrdata are
latency and power. A recurring theme throughout this sacti@n order of magnitude smaller compared to JPEG images or uncasegres
will be the benefits of performing feature extraction on thg'r' descriptors.

mobile device compared to performing all processing on a

remote server. transmission latency, compared3$end Imageas we illustrate

in Fig. 16 and 17. On the server, using VT matching with a
Retrieval Accuracy compressed inverted index, we can search through a million
It is relatively easy to achieve high precision (low falsdMage database in 100 milliseconds. We perform GV on a
positives) for mobile visual search applications. By reiqgia  SNort list of 10 candidates after fast geometric re-rankine
minimum number of feature matches after RANSAC geomd@P 500 candidate images. We can achieve second server
ric verification, we can avoid false positives entirely. dide Processing latency while maintaining high recall.

Recall as the percentage of query images correctly retieve TABLE Il
Our goal is to then maximize Recall at a negligibly low false PROCESSINGTIME
positive rate. _ _ _

Fig. 15 compares the Recall for three schen®and Fea- C"'T'gges'cf‘:p‘t)ﬁg ations T'mel(_szec)
tures (CHoG) Send Features (SIFT’:)n_d Sen_d Image (JPE_G) Feature extraction and compression 1-15
For the JPEG scheme, the bitrate is varied by changing the (for Send Featuresode) _
quality of compression. For the SIFT scheme, we extract SIFT 5:”’? side topeft?‘t'ons Time (1"8890)
descriptors on the mobile device, and transmit each descrip (fgfg(r;,g )fnr%cg;)nrl,de)
uncompressed as 1024 bits. For the CHoG scheme, we need to Vocabulary tree matching ' 100
transmit about 60 bits per descriptor accross the netwark. F Fast geometric re-ranking (per image) 0.46

: o erificai .
SIFT and CHoG schemes, we sweep the Recall-bitrate curve Geometric verification (per image) 30

by varying the number of descriptors transmitted.
First, we observe that a Recall of 96% is achieved at
the highest bitrate for challenging query images even with g /| i ) wey ]

—— In-door () (Average)

million images in the database. Second, we observe that tkge = dor ) edn
performance of the JPEG scheme rapidly deteriorates at Io@ij Out-door eden) | 3
bitrates. The performance suffers at low bitrates as trexast )
point detection fails due to JPEG compression artifactgdlh &
we note that transmitting uncompressed SIFT data is almost
always more expensive than transmitting JPEG compressed’ " ouwybassicics
images. Finally, we observe that the amount of data for CHoG (@) (b)
descriptors are an order of magnitude smaller than JPEG

. . . Fig. 16. Measured transmission latency (a) and time-out paage (b) for
images or SIFT descriptors, at the same retrieval a‘Ccuracytransmitting queries of different size over a 3G network-dior (1) is tested

in-doors with poor connectivity. “In-door (l1)” is testedidoors with good
reception. “Out-door” is tested outside of buildings.

=
=

—— In-door (1)
—e— In—door (Il)
Out-door

12%
1

0%

insmission L
Communication Time Out (Percent)

8
6
4
2

40 50 0 10 40 50

20 30
Query Data Size (KBs)

System Latency

The system latency can be broken down into 3 componentsTransmission Delay:The transmission delay depends on
processing delay on client, transmission delay, and psings the type of network used. In Fig. 17, we observe that data
delay on server. transmission time is insignificant for a WLAN network due

Client and Server Processing DelayVe show the time to the high bandwidth available. However, transmissioretim
for the different operations on the client and server in &abturns out to be a bottleneck for 3G networks. In Fig. 16,
II. The Send Featuresnode requires~1 second for feature we present experimental results for sending data over a 3G
extraction on the client. However, this increase in clientireless network. We vary query data sizes from that of @gipic
processing time is more than compensated by the decreaseampressed query features (3-4 KB) to typical JPEG query
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Image|,| Feature || Feature || __QueryData | | Vocabulary Tree
; Extraction | [Compression Matching
= ]
BN | pEEmE ) . ic Verificati
= Display Tderification Daia Geometric Verification
Client Server

Fig. 13. Stanford Product Search System. Due to the largbalsda the image recognition server is placed at a remotedacati most systems [3], [7],
[1], the query image is sent to the server and feature extradsi performed. In our system, we show that by performing featutraction on the phone, we
can significantly reduce the transmission delay and providatractive experience.

images (50 KB) to learn how query size affects transmissidmnergy Consumption
time. The communication time-out was set to 60 seconds. We
have conducted the experiment continuously over seveyal da On a mobile device, we are constrained by the energy of the
We tested at three different locations, typical locatioriere battery, and hence, conserving energy is critical. We nreasu
a user might use the visual search application. the average energy consumption associated with a singlg que
The median and average transmission latency of our expéfging the Nokia Energy Profiléron the Nokia 5800 phone.
ments are shown in Fig. 16. Sending the compressed query feaAle show the average energy consumption for a single
tures typically takes 3-4 seconds. The time required to #sad query usingSend Featuresnd Send Imagedor WLAN and
compressed query image is several times longer and vagies 8iG network connections in Fig. 18. For 3G connections, the
nificantly at different locations. However, transmissioglay energy consumed iBend Imagenode is almost 8 as much
does not include the cases when communication fails eptirehs Send FeaturesThe additional time needed to transmit
which increases with query size. We show the percentageiwfage data compared to feature data results in a greatemamou
transmissions that experience a time-out in Fig. 16(b). Tlé energy being consumed. For WLAN transmissi@end
time-out percentage of transmitting compressed queryifest Image consumes less energy, since feature extraction on the
is much lower than that of transmitting compressed queryobile client is not required.
images because of their smaller query size. Finally, we compute the number of image queries the mobile
can send before the battery runs out of power. A typical phone
: : battery has voltage of 3.7 V and a capacity~ef000 mAH
I Feature Extraction . .
- B o Tarsmson (or ~13.3K _Joules). Hence, for 3(_3 connectlons_, the maximum
1or number of images that the mobile can send is 13.3K Joules
/ 70 Joules =~ 190 total queries. FoSend Featureswe
would be able to perform 13.3 K joules / 21 Joules-830
total queries, which is 8 as many queries &end Imagean
perform. This difference becomes even more important as we
af . move towards streaming augmented reality applications.

12

Retrieval time (s)
o

70

JPG Feature Feature JPG Feature
(3G) (3G) Progressive  (WLAN) (WLAN)
(3G)

(2]
o
T

a
(=)
T

Fig. 17. End-to-end latency for different schemes. Compavetkehd Image
scheme, we achieve approximatelyx 4eduction in average system latency
using progressive transmission of CHoG feature descrifioas3G network.

IN
o
:

w
o
T

Energy (Joules)

N
[=)
T

End-to-End Latency:We compare end-to-end latency for
different schemes in Fig. 17. For WLAN, we observe that
< 1 second query latency is achieved 8end Imagemode.
Send Featuresnode is slower due to the processing delay on
the client. With such fast response times over WLAN, we are
able .to operate our system in a continuous Mobile Augmentglza_ 18, Average energy consumption of a single query uSiegd Image
Reality mode [58]. and Send Featuresnode for various types of transmission.

For 3G networks, network latency remains the bottleneck
as seen in Fig. 17. In this scenario, there is significant fitene
in sending compressed featur8&nd Featureseduces system
latency by Z compared td&Send Imagenode. INokia Energy Profiler: http://store.ovi.com/content/1237

=
o
T

Image  Feature Image  Feature
(3G) (3G) (WLAN) (WLAN)
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CONCLUDING REMARKS seconds, compared to sending the image which takes several
times as long. Somewhat counter to intuition, extractind an
Mobile Visual Search is ready for prime-time. State-of-tharansmitting feature data on the mobile client requiresl@ss

art systems today achieve over 95% recall at negligibleefalsnergy than sending the image.
positive rate for databases with over 1M classes, a redognit Numerous open problems remain. Accurate and near-
performance that is sufficient for many applications. The kenstantaneous web-scale visual search with billions ofgiesa
are robust and discriminative local features that are used\jill likely remain one of the Grand Challenges of multimedia
a "Bag-of-Visual-Words” approach. Robustness againsiescgechnology for years to come. And we would like to perform
changes and rotation is achieved by interest point detectigiobile visual search at video rates, without ever pressing a
algorithms that robustly yield not only a location, but alsgutton. While faster processors and networks will get usetlos
feature scale and dominant orientation. That permits featyo this goal, lower-complexity image analysis algorithnie a
descriptors computed on canonical patches in a local G@gently needed. Hardware support on mobile devices should
ordinate system. Robustness against brightness and SoONtERo he|p U|timate|y, we may expect to see ubiquitous mo-
variations is achieved by normalizing the patch varianog abjle augmented rea"ty systems that Continuous|y Supg)’j;ap
using only the image gradient to compute feature descEptojhformation and links on everything the camera of a mobile

This takes care of much of the variability among correspagdi device sees, thus seamlessly linking the virtual world dred t
query and database features, but not all. Foreshorteriedtsf physical world.

the feature descriptor and correspondences can no longer be

established, if the angle becomes extreme. Adding foréshor REFERENCES
ened descriptors to the database or using affine invariafif Google Goggleshttp:/www.google.com/mobile/goggles/.
descriptors are possible remedies. Robustness against Nokia Point and Find http://www.pointandfind.nokia.com.

. . . . . Kooabg http://www.kooaba.com.
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