

STREAMING IN 19705 NVP & ST: the very first real-time streaming protocols

Yuriy Reznik Brightcove, Inc.

DEMUXED

TIMELINE

The era of circuitswitching networks The invention of packet-switching networks.

The rise of ARPAnet. Design of first systems for voice transmission over packet networks. NVP and ST protocols. TCP and its evolution.

The era of UDP-based (RTP+RTSP) streaming The era of progressive downloads and TCP- and HTTP-based streaming (HLS, DASH)

Evolution toward lowdelay and non-TCPbased streaming.

1880s Telegraphs and first ideas and demonstrations of voice transmission

1900s First commercial telephones and telephone systems

1959 AT&T Picturephone

1962 Paul Baran. "On Distributed Communication Networks" RAND

1963 Lenny Kleinrock: "Message delay in communication nets with storage", MIT

1966 Donald Davies, "Proposal for a Digital Communications Network," NPL

1969 ARPA project #723 "Resource sharing computer networks"

1973 Danny Cohen, implementation of NVP protocol. First experiments with "packet voice".

1974, First voice call over packet-switched network. MIT-USC

1974 V. Cerf & R. Kahn, "A protocol for Packet Net. Comm." (TCP v1) **1977** TCP v2 (IEN5) **1978** TCP v3 (IEN21)

1979 J. Forgie, ST - Internet Stream Protocol (IEN119, IP v5) Alternative to IP.

1980 split of TCP:

RFC 760: IP v4

RFC 761: TCP v4

1080 UDP (RFC 768) 1981 NVP-II (NVP over IP)

1989-1992: HTTP

1993, Live streaming over MBONE network.

1995 RealAudio, First purposedly-built streaming application with pre-roll delay

1995-1999 Other early streaming systems.

> **1996** RTP: RFC 1889 **1998** RTSP: RFC 2326

1998 First ABR streaming

2002-2007 Flash adds video playback capability. Popularizes progressive downloads.

2005 YouTube launched. Uses progressive downloads.

2007 Move Networks HTTP-based streaming

2008 HTML 5 released Beginning of plugin-free trend

2009 Apple HTTP live streaming (HLS)

2010 Microsoft **Smooth Streaming**

2012 MPEG DASH ISO/IEC 23003-1

Web RTC

2011 WebRTC **Browser-supported VoIP** and video conferencing

> **2017** Low-latency DASH (DVB report) 2020 Low-latency HLS **2020** Low-latency modes of DASH (DASH-IF IOP guidelines) **2024** L3D DASH

2012-2021 QUIC development and adoption (RFC 9000)

2022-present Media over QUIC (MoQ) development

1850-1950s

1960s

1970s

1980s

1990s

2000s

TIMELINE

The era of circuitswitching networks The invention of packet-switching networks.

Main focus of this talk

The rise of ARPAnet. Design of first systems for voice transmission over packet networks. NVP and ST protocols. TCP and its evolution.

The era of UDP-based (RTP+RTSP) streaming The era of progressive downloads and TCP- and HTTP-based streaming (HLS, DASH)

Evolution toward lowdelay and non-TCPbased streaming.

1880s Telegraphs and first ideas and demonstrations of voice transmission

1900s First commercial telephones and telephone systems

1959 AT&T Picturephone

1962 Paul Baran, "On Distributed Communication Networks" RAND

1963 Lenny Kleinrock: "Message delay in communication nets with storage", MIT

1966 Donald Davies, "Proposal for a Digital Communications Network," NPL

1969 ARPA project #723 "Resource sharing computer networks"

1973 Danny Cohen, implementation of NVP protocol. First experiments with "packet voice".

1974, First voice call over packet-switched network. MIT-USC

1974 V. Cerf & R. Kahn, "A protocol for Packet Net. Comm." (TCP v1) **1977** TCP v2 (IEN5) **1978** TCP v3 (IEN21)

1979 J. Forgie, ST - Internet Stream Protocol (IEN119, IP v5) Alternative to IP.

1980 split of TCP:

RFC 760: IP v4

RFC 761: TCP v4

1080 UDP (RFC 768) 1981 NVP-II (NVP over IP)

1989-1992: HTTP

1993, Live streaming over MBONE network.

1995 RealAudio, First purposedly-built streaming application with pre-roll delay

1995-1999 Other early streaming systems.

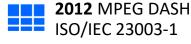
> **1996** RTP: RFC 1889 **1998** RTSP: RFC 2326

1998 First ABR streaming

2002-2007 Flash adds video playback capability. Popularizes progressive downloads.

2005 YouTube launched. Uses progressive downloads.

2007 Move Networks HTTP-based streaming


2008 HTML 5 released Beginning of plugin-free trend

2009 Apple HTTP live streaming (HLS)

2010 Microsoft **Smooth Streaming**

Web RTC

and video conferencing

Browser-supported VoIP

2011 WebRTC

2017 Low-latency DASH (DVB report) 2020 Low-latency HLS **2020** Low-latency modes of DASH (DASH-IF IOP guidelines) **2024** L3D DASH

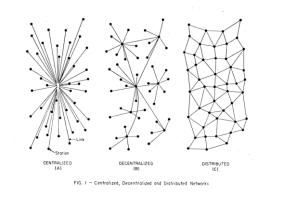
2012-2021 QUIC development and adoption (RFC 9000)

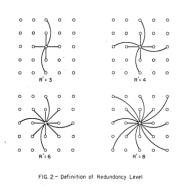
2022-present Media over QUIC (MoQ) development

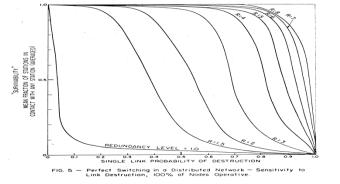
1850-1950s

1960s

1970s


1980s


1990s


2000s

PACKET SWITCHING

- ► Motivation 1 (Paul Baran, RAND, 1962)
 - > It is needed to increase survivability (resilience) of tactical communication systems

► Motivation 2 (Lenny Kleinrock, MIT, 1959)

- > Circuit switching is problematic because *data* communications is bursty, that is, it is typically dominated by short bursts of activity with long periods of inactivity.
- > Any static assignment of network resources, as is the case with circuit switching, would be extremely wasteful of those resources, whereas dynamic assignment (on demand sharing) would be highly efficient.

Origins of packet switching:

- L. Kleinrock, "Message Delay in Communication Nets with Storage," Ph.D. dissertation, MIT, Cambridge, MA, 1962.
- P. Baran, "On Distributed Communication Networks," Rand Paper P-2626, Sept. 1962.
- D. W. Davies, "Proposal for a Digital Communication Network," unpublished memo, June 1966,
- D. W. Davies et al., "A Digital Communication Network For Computers Giving Rapid Response at Remote Terminals," ACM Symp. Op. Sys. Principles, Gatlinburg, TN, Oct. 1967.
- D. W. Davies, "The Principles of a Data Communication Network for Computers and Remote Peripherals," Proc. IFIP Hardware, Edinburgh, 1968.
- L. Kleinrock, "An early history of the internet [History of Communications]." IEEE Communications Magazine 48, no. 8 (2010): 26-36.

Leonard Kleinrock CUNY, MIT, UCLA 1934 -

Paul Baran UCLA, RAND Corp. 1926 - 2011

Donald Davies Imperial College, NPL 1926 - 2011

SPECH COMMUNICATION

▶ Speech ≠ data!

- ► A mix of voiced and silence intervals
- ► The average rate is ~ 40-50% from peak
- ► Max. duration of a talkspurt ~ 20sec
- ► Impacts of delays:
 - > If the overall round-trip delay is less than about I/4 second, conversations are carried out in a "normal" fashion with considerable feedback from "listener" to "talker" taking place.
 - > When greater delay is experienced, people switch to a more formal mode in which feedback utterances are suppressed, and the listener generally waits until the talker indicates that he has finished before saying anything.
 - > User satisfaction declines with increasing delay, but systems remain usable for delays as long as several seconds.

► Impacts of packet losses:

- > The loss of small (50 msec or less) chunks of speech produces a degradation of quality, but sentence intelligibility tends to be preserved up to fairly high percentage losses.
- > Larger chunks of speech represent whole syllables or words, and their loss can change the meaning of sentences.

Some references

James W. Forgie, ST - A Proposed Internet Stream Protocol, IEN 119, 7 September 1979 https://www.rfc-editor.org/ien/ien119.txt

C. Weinstein and J. Forgie, "Experience with Speech Communication in Packet Networks," JSAC 1/6,1983.

L. Delgrossi, and L. Delgrossi, "The Internet Stream Protocol," in Design of Reservation Protocols for Multimedia Communication, Springer, 1996, pp.49-63.

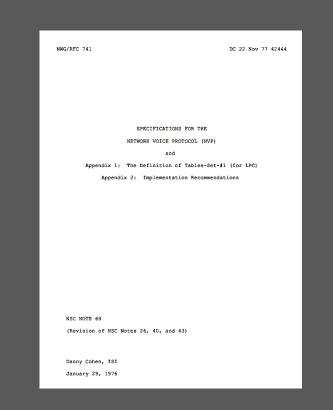
A.M. Kondoz, "Digital speech: coding for low bit rate communication systems," John Wiley & Sons; 2005.

R.M. Gray, "Linear Predictive Coding and the Internet Protocol," Now publishers, Boston, 2010.

NVP = NETWORK VOICE PROTOCOL

- ► Developed in 1973-1976 by Danny Kohen, USC / ISI as part of ARPA "Packet Speech" project
- ► NVP defined:
 - > call initiation and termination, including negotiation of voice encoder compatibility and handling of ringing and busy conditions
 - > packetization of voice for transmission, with the time stamps and sequence numbers needed for speech reconstitution at the receiver
 - > speech playout with buffering to smooth variable packet delays
- Design features
 - > Separate control and data messages
 - > Avoidance of retransmissions
 - > Independence from lower-level protocols (ARPANET NCP)
- First demonstrated operation
 - > USC-MIT voice call in August 1974

First voice over packet network system Prototype telephone for testing the Network Voice Protocol.


D. Cohen, Specification for the Network Voice Protocol (NVP), RFC 741, January 29, 1976.

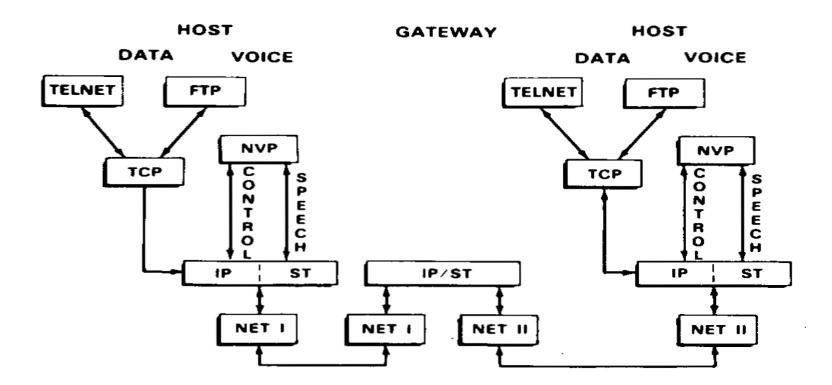
MIT Lincoln

Laboratory, 1974

Danny Cohen Harvard, Caltech, USC/ISI, Sun 1937-2019

BRİGHTCOVE°

NVP – EXAMPLE CONTROL SEQUENCES


Here is an example for a connection	on:	(350) C: 3,6,1,64	Can you use a 64 sample Frame length
(377) C: 1, <who>,<whom>,340</whom></who>	Please talk to me on 340/341.		transmission? negotiation
(340) A: 2,1	I refuse, since I'm busy. Handshake	(360) A: 4,6,64	I can use 64.
Another example:		(350) C: 3,7,2,1,2	SIMPLE or OPTIMIZED acoustic coding?
(377) C: 1, <who>,<whom>,360</whom></who>	Please talk to me on 360/361.	(360) A: 4,7,2	OPTIMIZED!
(360) A: 6,350	OK. You talk to me on 350/351.	(350) C: 3,8,1,1	Can you do SIMPLE info coding?
(350) C: 1, <who>,<whom></whom></who>	I want to talk to you.		
(360) A: 3,1,1,2	Can you do CVSD? (ANSWERER tries	(360) A: 4,8,1	I can do SIMPLE.
	to be the NEGOTIATION MASTER)	(350) C: 3,9,1,58	mu = 0.90625?
(350) C: 12,1	I want to be it.	(360) A: 4,9,58	Fine with me.
(360) A: 13,1	That's OK with me.	(350) C: 3,10,1	Table set #1?
(350) C: 3,1,1,2	Can you do CVSD?	(360) A: 4,10,1	Of course!
(360) A: 5,1,1	No, but I can do LPC. capability	(350) C: 6	I am ready. (Note: No "RINGING" sent)
(350) C: 3,1,1,3	Can you do RELP? negotiation	(350) C: 8	And you?
(360) A: 5,1,1	No, but I can do LPC.	(360) A: 6	I am ready, too.
(350) C: 3,1,1,1	How about LPC?		
(360) A: 4,1,1	LPC is fine with me.		Data is exchanged now,
(350) C: 3,2,1,150	Can you use 150 microseconds		on 351 and 361.
(,,-,-,	sampling?	(350) C: 10,1234	Echo it, please.
(360) A: 4,2,150	I can use 150 microseconds.	(360) A: 11,1234	Here it comes! Session start
(350) C: 3,4,3,976,1040,2016	Can you use 976, 1040, or 2016 bits/msg?		
(360) A: 4,4,976	I can use 976. negotiation	(360) A: 10,3333	Now ANSWERER wants to measure
		(350) C: 11,3333	the delays, too.
(350) C: 3,5,1,10	Can you send 10 coefficients?		
(360) A: 4,5,10	I can send 10.	(222) X· 2 3	Termination by either user

(???) X: 2,3

Termination by either user.

ST = STREAM PROTOCOL

- ► Developed in 1973-1979 by Jim Forgie, Danny Kohen, and Estil Hoversten
- ► Replaced IP with ST packets, forcing restricted (typically fixed for session duration) routing

- ► Key design objectives:
 - > Statistically defined delay and bandwidth of speech connections
 - > Minimization of header overhead of the traditional IP

References

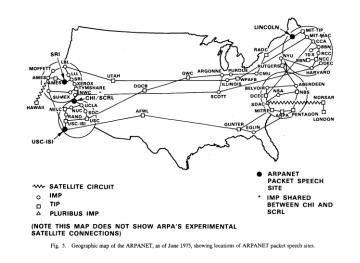
James W. Forgie, ST - A Proposed Internet Stream Protocol, IEN 119, 7 September 1979 https://www.rfc-editor.org/ien/ien119.txt

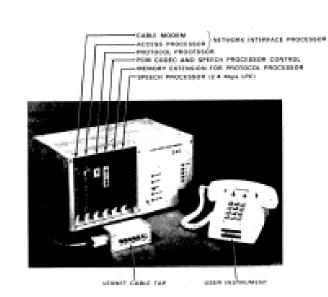
- C. Weinstein and J. Forgie, "Experience with Speech Communication in Packet Networks," JSAC 1/6,1983.
- L. Delgrossi, and L. Delgrossi, "The Internet Stream Protocol," in Design of Reservation Protocols for Multimedia Communication, Springer, 1996, pp.49-63
- L. Delgrossi, "Design of reservation protocols for multimedia communication," Springer Science & Business Media, 2012.

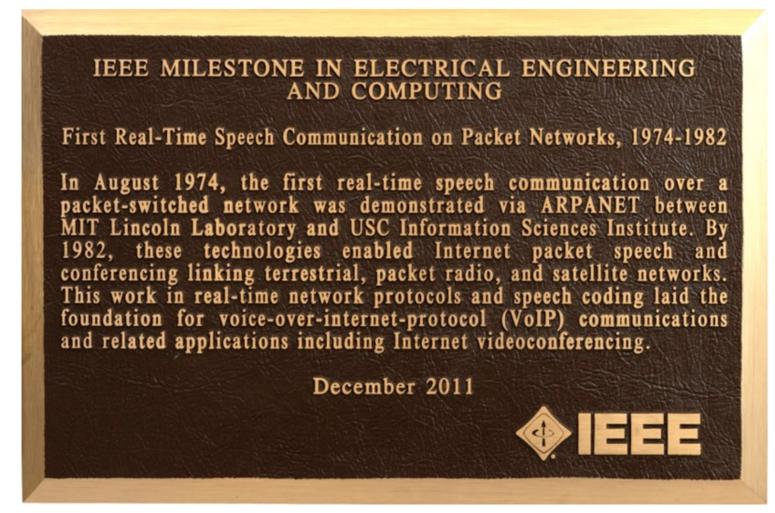
James W. Forgie MIT, MIT Lincoln Lab 1929 - 2011

Danny Cohen Harvard, Caltech, USC/ISI, Sun 1937-2019

Estil Hoversten lowa State, MIT 1936-2021


ST - MOTIVATIONS


- ► Conventional datagram networks are unsatisfactory for speech communication except under conditions of light overall load or where speech constitutes a small fraction of the overall load and can be given priority service.
- The difficulty with datagram nets comes from their **inability to provide the controlled delay** and **guaranteed data rate** required for speech. Delay increases with offered load, slowly at light load, but dramatically as average load approaches capacity. Flow control strategies tend to be aimed at buffer management and fairness goals, both of which will operate to restrict the effective data rate available to an individual user as load increases. Traffic control strategies are mainly concerned with congestion control and are primarily defensive, resulting in offered datagrams being held off or refused when difficulties are detected. Unfortunately for the speech user, by the time congestion is detected, it is already too late. For satisfactory speech service, congestion due to overload must be prevented. **Since a datagram net has no knowledge of the a priori requirements of users, it cannot develop traffic control strategies to meet these requirements.**
- Another disadvantage of datagrams for speech is their **packet efficiency**. The speech content of an individual user packet can be anything from 50 or so bits up to 1200 or 1300 bits depending upon the speech digitization technique in use. **The need to carry full source and destination addresses as well as other packet-handling information in each packet penalizes datagrams relative to other packet and circuit switching techniques.** In the internet case the penalty is worse since two sets of header information have to be carried. For example, IP datagrams on SATNET carrying 40-msec chunks of 16-kbps speech (a reasonable chunk size and popular data rate) would have a packet efficiency of about 56% and would require utilization factors of about 80% to break even with respect to circuit switching. It is unlikely that delay characteristics would be satisfactory at this level of load.


BRİGHTCOVE°

FIRST ARPANET VOICE TRANSMISSIONS

- ► 1971: First experiments using PCM speech and simulated network. MIT LL
- ► August 1974: First voice call over ARPAnet between USC/ISI and MIT LL
 - > Codec: 9.6 kbits/CVSD
- December 1974: First call over ARPAnet using LPC vocoder
 - > Sites: MIT LL and CHI (UCSB)
 - > Codec: LPC, 3.5kbits
- ▶ January 1975: First multi-way voice conferencing over ARPAnet
 - > Sites: CHI, ISI, LL, and SRI
 - > Codec: LPC, 3.5kbits

TIMELINE

The era of circuitswitching networks The invention of packet-switching networks.

The rise of ARPAnet. Design of first systems for voice transmission over packet networks. NVP and ST protocols. TCP and its evolution.

UDP-based streaming

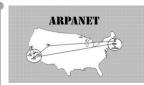
The era of UDP-based (RTP+RTSP) streaming The era of progressive downloads and TCP- and HTTP-based streaming (HLS, DASH)

Evolution toward lowdelay and non-TCPbased streaming.

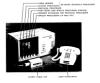
1880s Telegraphs and first ideas and demonstrations of voice transmission

1900s First commercial telephones and telephone systems

1959 AT&T Picturephone


1962 Paul Baran. "On Distributed Communication Networks" RAND

1963 Lenny Kleinrock: "Message delay in communication nets with storage", MIT


1966 Donald Davies, "Proposal for a Digital Communications Network," NPL

1969 ARPA project #723 "Resource sharing computer networks"

1973 Danny Cohen, implementation of NVP protocol. First experiments with "packet voice".

1974, First voice call over packet-switched network. MIT-USC

1974 V. Cerf & R. Kahn, "A protocol for Packet Net. Comm." (TCP v1) **1977** TCP v2 (IEN5) **1978** TCP v3 (IEN21)

1979 J. Forgie, ST - Internet Stream Protocol (IEN119, IP v5) Alternative to IP.

1980 split of TCP:

RFC 760: IP v4

RFC 761: TCP v4

1080 UDP (RFC 768) 1981 NVP-II (NVP over IP)

1989-1992: HTTP

1993, Live streaming over MBONE network.

1995 RealAudio, First purposedly-built streaming application with pre-roll delay

1995-1999 Other early streaming systems.

> **1996** RTP: RFC 1889 **1998** RTSP: RFC 2326

1998 First ABR streaming

2002-2007 Flash adds video playback capability. Popularizes progressive downloads.

2005 YouTube launched. Uses progressive downloads.

2007 Move Networks HTTP-based streaming

2008 HTML 5 released Beginning of plugin-free trend

2009 Apple HTTP live streaming (HLS)

2010 Microsoft **Smooth Streaming**

2012 MPEG DASH ISO/IEC 23003-1

Web RTC

2011 WebRTC **Browser-supported VoIP** and video conferencing

> **2017** Low-latency DASH (DVB report) 2020 Low-latency HLS **2020** Low-latency modes of DASH (DASH-IF IOP guidelines) **2024** L3D DASH

2012-2021 QUIC development and adoption (RFC 9000)

2022-present Media over QUIC (MoQ) development

1850-1950s

1960s

1970s

1980s

1990s

000s

TIMELINE

The era of circuitswitching networks The invention of packet-switching networks.

The rise of ARPAnet. Design of first systems for voice transmission over packet networks. NVP and ST protocols. TCP and its evolution.

The era of UDP-based (RTP+RTSP) streaming

Longer delay, **TCP+HTTP-based** streaming

The era of progressive downloads and TCP- and HTTP-based streaming (HLS, DASH)

Evolution toward lowdelay and non-TCPbased streaming.

2017 Low-latency DASH

2020 Low-latency HLS

of DASH (DASH-IF IOP

2012-2021 QUIC

development and

adoption (RFC 9000)

2022-present Media

2020 Low-latency modes

(DVB report)

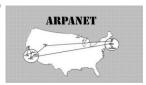
guidelines)

2024 L3D DASH

1880s Telegraphs and first ideas and demonstrations of voice transmission

1900s First commercial telephones and telephone systems

1959 AT&T Picturephone


1962 Paul Baran. "On Distributed Communication Networks" RAND

1963 Lenny Kleinrock: "Message delay in communication nets with storage", MIT

1966 Donald Davies, "Proposal for a Digital Communications Network," NPL

1969 ARPA project #723 "Resource sharing computer networks"

1973 Danny Cohen, implementation of NVP protocol. First experiments with "packet voice".

1974, First voice call over packet-switched network. MIT-USC

1974 V. Cerf & R. Kahn, "A protocol for Packet Net. Comm." (TCP v1) **1977** TCP v2 (IEN5) **1978** TCP v3 (IEN21)

1979 J. Forgie, ST - Internet Stream Protocol (IEN119, IP v5) Alternative to IP.

1980 split of TCP:

RFC 760: IP v4

RFC 761: TCP v4

1080 UDP (RFC 768) 1981 NVP-II (NVP over IP)

1989-1992: HTTP

1993, Live streaming over MBONE network.

1995 RealAudio, First purposedly-built streaming application with pre-roll delay

1996 RTP: RFC 1889 **1998** RTSP: RFC 2326

1998 First ABR streaming

2002-2007 Flash adds video playback capability. Popularizes progressive downloads.

2005 YouTube launched. Uses progressive downloads.

2007 Move Networks HTTP-based streaming

2008 HTML 5 released Beginning of plugin-free trend

2009 Apple HTTP live streaming (HLS)

2010 Microsoft **Smooth Streaming**

Web RTC

2011 WebRTC

Browser-supported VolP

and video conferencing

over QUIC (MoQ) 2012 MPEG DASH development ISO/IEC 23003-1

1850-1950s

1960s

1970s

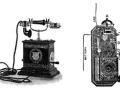
1980s

1990s

TIMELINE

The era of circuitswitching networks The invention of packet-switching networks.

The rise of ARPAnet. Design of first systems for voice transmission over packet networks. NVP and ST protocols. TCP and its evolution.


The era of UDP-based (RTP+RTSP) streaming The era of progressive downloads and TCP- and HTTP-based streaming (HLS, DASH)

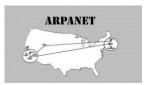
Back to low-delay (and UDP-based?) streaming

Evolution toward lowdelay and non-TCPbased streaming.

1880s Telegraphs and first ideas and demonstrations of voice transmission

1900s First commercial telephones and telephone systems

1959 AT&T Picturephone


1962 Paul Baran. "On Distributed Communication Networks" RAND

1963 Lenny Kleinrock: "Message delay in communication nets with storage", MIT

1966 Donald Davies, "Proposal for a Digital Communications Network," NPL

1969 ARPA project #723 "Resource sharing computer networks"

1973 Danny Cohen, implementation of NVP protocol. First experiments with "packet voice".

1974, First voice call over packet-switched network. MIT-USC

1974 V. Cerf & R. Kahn, "A protocol for Packet Net. Comm." (TCP v1) **1977** TCP v2 (IEN5) **1978** TCP v3 (IEN21)

1979 J. Forgie, ST - Internet Stream Protocol (IEN119, IP v5) Alternative to IP.

1980 split of TCP:

RFC 760: IP v4

RFC 761: TCP v4

1080 UDP (RFC 768) 1981 NVP-II (NVP over IP)

1989-1992: HTTP

1993, Live streaming over MBONE network.

1995 RealAudio, First purposedly-built streaming application with pre-roll delay

1995-1999 Other early streaming systems.

> **1996** RTP: RFC 1889 **1998** RTSP: RFC 2326

1998 First ABR streaming

2002-2007 Flash adds video playback capability. Popularizes progressive downloads.

2005 YouTube launched. Uses progressive downloads.

2007 Move Networks HTTP-based streaming

2008 HTML 5 released Beginning of plugin-free trend

2009 Apple HTTP live streaming (HLS)

2010 Microsoft Smooth Streaming

2012 MPEG DASH ISO/IEC 23003-1

Web RTC

2011 WebRTC **Browser-supported VoIP** and video conferencing

> **2017** Low-latency DASH (DVB report) **2020** Low-latency HLS **2020** Low-latency modes of DASH (DASH-IF IOP guidelines) **2024** L3D DASH

2012-2021 QUIC development and adoption (RFC 9000)

2022-present Media over QUIC (MoQ) development

1850-1950s

1960s

1970s

1980s

1990s

2000s

PARALLELS WITH 1970S

- ► We again realize that for low-delays we have to send data in smaller chunks
 - > From video segments to shorter segments or frames
- ► The progress in device compute capabilities and video signal processing (super-resolution, frame-rate up-conversion, GenAI) allows more effective concealment and regeneration of missing parts than it was possible before.
 - > GenAl today = LPC speech synthesis of 1970s
- ► This enables the use of UDP (or QUIC with no retransmissions) for video, and promises some improvements in the efficiency of video transmissions.
- ► However, we still have largely unpredictable behavior of IP with respect to bandwidth and latencies!
 - > Engineers in 1970s have suggested to solve it by replacing the IP with ST.
 - > What present generation of engineers will do?

#